Publications by authors named "Steven Coppen"

Background: Telomeres are known to provide genomic stability and telomere length has been associated with cardiovascular diseases. Moreover, a higher telomerase activity has been shown to be associated with ventricular arrhythmias (VA) in ischemic cardiomyopathy. Increasing evidence suggests that genetic variation in key telomere genes has an impact on telomerase activity.

View Article and Find Full Text PDF

Intracoronary injection of bone marrow mononuclear cells (BMMNC) is an emerging treatment for heart failure. Initial donor cell retention in the heart is the key to the success of this approach, but this process remains insufficiently characterized. Although it is assumed that cell size of injected cells may influence their initial retention, no scientific evidence has been reported.

View Article and Find Full Text PDF

Background: Transplantation of allogeneic mesenchymal stromal cells (MSCs) is a promising treatment for heart failure. We have shown that epicardial placement of cell sheets markedly increases donor cell survival and augments therapeutic effects compared with the current methods. Although immune rejection of intramyocardially injected allogeneic MSCs have been suggested, allogeneic MSCs transplanted on the heart surface (virtual space) may undergo different courses.

View Article and Find Full Text PDF

Background: Embryonic stem (ES) cells are pluripotent cells with the ability to differentiate to any cell type of the resident organism. In recent years, significant advances have been made in using these cells to obtain large numbers of cardiomyocyte (CM)-like cells for scientific research and clinical application. A vast number of protocols have emerged describing differentiation methods without the use of animal serum or extracts restrictive for use in a human clinical setting.

View Article and Find Full Text PDF

In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete.

View Article and Find Full Text PDF

Transplantation of bone marrow mesenchymal stromal cells (MSCs) is an emerging treatment for heart failure. We have reported that epicardial placement of MSC-sheets generated using temperature-responsive dishes markedly increases donor MSC survival and augments therapeutic effects in an acute myocardial infarction (MI) model, compared to intramyocardial (IM) injection. This study aims to expand this knowledge for the treatment of ischemic cardiomyopathy, which is likely to be more difficult to treat due to mature fibrosis and chronically stressed myocardium.

View Article and Find Full Text PDF

Toll-like receptor 9 (TLR9) has a key role in the recognition of pathogen DNA in the context of infection and cellular DNA that is released from damaged cells. Pro-inflammatory TLR9 signalling pathways in immune cells have been well investigated, but we have recently discovered an alternative pathway in which TLR9 temporarily reduces energy substrates to induce cellular protection from stress in cardiomyocytes and neurons. However, the mechanism by which TLR9 stimulation reduces energy substrates remained unknown.

View Article and Find Full Text PDF

Transplantation of unfractionated bone marrow mononuclear cells (BMCs) repairs and/or regenerates the damaged myocardium allegedly due to secretion from surviving BMCs (paracrine effect). However, donor cell survival after transplantation is known to be markedly poor. This discrepancy led us to hypothesize that dead donor BMCs might also contribute to the therapeutic benefits from BMC transplantation.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) are the central players in innate immunity. In particular, TLR9 initiates inflammatory response by recognizing DNA, imported by infection or released from tissue damage. Inflammation is, however, harmful to terminally differentiated organs, such as the heart and brain, with poor regenerative capacity, yet the role of TLR9 in such nonimmune cells, including cardiomyocytes and neurons, is undefined.

View Article and Find Full Text PDF

Transplantation of bone marrow-derived mesenchymal stromal cells (MSCs) is an emerging treatment for heart failure based on their secretion-mediated "paracrine effects". Feasibility of the scaffoldless cell sheet technique to enhance the outcome of cell transplantation has been reported using other cell types, though the mechanism underpinning the enhancement remains uncertain. We here investigated the role of this innovative technique to amplify the effects of MSC transplantation with a focus on the underlying factors.

View Article and Find Full Text PDF

Background: Clinical application of skeletal myoblast transplantation has been curtailed due to arrhythmogenicity and inconsistent therapeutic benefits observed in previous studies. However, these issues may be solved by the use of a new cell-delivery mode. It is now possible to generate "cell-sheets" using temperature-responsive dishes without artificial scaffolds.

View Article and Find Full Text PDF

Background: Deep sequencing of single cell-derived cDNAs offers novel insights into oncogenesis and embryogenesis. However, traditional library preparation for RNA-seq analysis requires multiple steps with consequent sample loss and stochastic variation at each step significantly affecting output. Thus, a simpler and better protocol is desirable.

View Article and Find Full Text PDF

Background: Intracoronary injection of bone marrow mononuclear cells (BMMNC) is a common clinical protocol of cell transplantation for heart disease, but poor engraftment of donor cells in the heart, which will limit its therapeutic efficacy, is a major issue. Initial "retention" (endothelial adherence and/or extravasation) of BMMNC immediately after intracoronary injection is a key step toward successful engraftment; however, this event has not been fully characterized. The aim of this study is to quantitatively clarify the frequency of "retention" of BMMNC after intracoronary injection, determine the impact of prior induction of ischemia-reperfusion injury on "retention" efficiency, and elucidate the underlying mechanisms focusing on adhesion molecule-mediated cell-cell interactions.

View Article and Find Full Text PDF

Cell transplantation is an emerging therapy for treating post-infarction heart failure. Although the paracrine effect has been proposed to be an important mechanism for the therapeutic benefits, details remain largely unknown. This study compared various aspects of the paracrine effect after transplantation of either bone marrow mononuclear cells (BMC) or skeletal myoblasts (SMB) into the post-infarction chronically failing heart.

View Article and Find Full Text PDF

Background: Arrhythmia occurrence is a variable but serious concern of cell therapy for treating heart failure. Using a rat postinfarction chronic heart failure model, we compared skeletal myoblast (SMB) with bone marrow cell (BMC) injection to highlight donor cell-specific, late-phase arrhythmogenesis and the underlying factors.

Methods And Results: SMBs or BMCs derived from male GFP-transgenic rats, or PBS were injected intramyocardially into female rat hearts 3 weeks after coronary artery occlusion.

View Article and Find Full Text PDF

Background: Inflammation plays an important role in the progress of adverse ventricular remodeling after myocardial infarction. High-mobility group box 1 (HMGB1) is a nuclear protein, which has recently been uncovered to also act as a modifier of inflammation when released. We hypothesized that HMGB1 injection could preferentially modulate local myocardial inflammation, attenuate ventricular remodeling, and subsequently improve cardiac performance of postinfarction chronic heart failure.

View Article and Find Full Text PDF

Background: Intramyocardial injection of skeletal myoblasts (SMB) has been shown to be a promising strategy for treating post-infarction chronic heart failure. However, insufficient therapeutic benefit and occurrence of ventricular arrhythmias are concerns. We hypothesised that the use of a retrograde intracoronary route for SMB-delivery might favourably alter the behaviour of the grafted SMB, consequently modulating the therapeutic effects and arrhythmogenicity.

View Article and Find Full Text PDF

Side population cells have been found in various types of adult tissue including heart and are presumed to be tissue-specific stem/progenitor cells. In the present study, we confirmed the presence of cardiac side population (cSP) cells, which showed both the Hoechst 33342 efflux ability and ABCG2 expression, in adult murine heart. Flow cytometric analysis showed that more than half of cSP cells expressed the endothelial marker VE-cadherin or the smooth muscle markers, alpha-smooth muscle actin and desmin.

View Article and Find Full Text PDF

Apelin, the ligand for the angiotensin receptor like-1, has been implicated in the pathogenesis of atrial fibrillation and heart failure. However, it is unknown if apelin has direct effects on cardiomyocyte contractility and electrophysiology. APJ-like immunoreactivity was localized to T-tubules and intercalated disc area in isolated adult rat ventricular myocytes.

View Article and Find Full Text PDF

Background: Therapeutic efficacy of bone marrow (BM) cell injection for treating ischemic chronic heart failure has not been established. In addition, experimental data are lacking on arrhythmia occurrence after BM cell injection. We hypothesized that therapeutic efficacy and arrhythmia occurrence induced by BM cell injection may be affected by the cell delivery route.

View Article and Find Full Text PDF

Background: Antibody therapy to inhibit either P-selectin or intercellular adhesion molecule-1 (ICAM-1) has been reported to provide myocardial protection against leukocyte-mediated reperfusion injury. Because these molecules play different roles in the leukocyte-endothelial interaction, co-inhibition of both may achieve further enhanced cardioprotection. In addition, the therapeutic efficacy of such antibody therapy may be affected by the delivery route used.

View Article and Find Full Text PDF

Background: Gap junction expression is considered to influence myocardial conduction and arrhythmogenesis, but studies in patients with atrial fibrillation (AF) have reported inconsistent results. We used human atrial conduction and arrhythmogenicity to provide clinical parameters with which to correlate quantification of connexin40 (Cx40) by different techniques to address the hypothesis that antibody-epitope binding properties may influence quantification methods.

Methods And Results: Atrial conduction properties were studied in patients undergoing coronary artery bypass grafting (N = 27) using multi-electrode array mapping.

View Article and Find Full Text PDF

Cell transplantation of skeletal myoblasts (SMs) is one possible treatment for repairing cardiac tissue after myocardial injury. However, inappropriate electrical coupling between grafted SMs and host cardiomyocytes may be responsible for the arrhythmias observed in clinical trials of SM transplantation. Whether functional gap junctions occur between the two cell types remains controversial.

View Article and Find Full Text PDF