To discriminate the compliance of soft objects, we rely upon spatiotemporal cues in the mechanical deformation of the skin. However, we have few direct observations of skin deformation over time, in particular how its response differs with indentation velocities and depths, and thereby helps inform our perceptual judgments. To help fill this gap, we develop a 3D stereo imaging method to observe contact of the skin's surface with transparent, compliant stimuli.
View Article and Find Full Text PDFGrasping and manipulating an object requires us to perceive its material compliance. Compliance is thought to be encoded by relationships of force, displacement, and contact area at the finger pad. Prior work suggests that objects must be sufficiently deformed to become discriminable, but the utility of time-dependent cues has not been fully explored.
View Article and Find Full Text PDF