Aims: Free fatty acid receptor 4 (Ffar4) is a receptor for long-chain fatty acids that attenuates heart failure driven by increased afterload. Recent findings suggest that Ffar4 prevents ischemic injury in brain, liver, and kidney, and therefore, we hypothesized that Ffar4 would also attenuate cardiac ischemic injury.
Methods And Results: Using a mouse model of ischemia-reperfusion (I/R), we found that mice with systemic deletion of Ffar4 (Ffar4KO) demonstrated impaired recovery of left ventricular systolic function post-I/R with no effect on initial infarct size.
G protein-coupled receptors that signal through Gαq (GqPCRs), like α1-adrenergic and angiotensin receptors (α1-AR, AT-R), are traditionally thought to mediate pathologic remodeling in heart failure, including cardiac myocyte death. However, we previously demonstrated that α1- ARs are cardioprotective and identified an α1A-subtype-ERK survival-signaling pathway in adult cardiac myocytes. Recently, we demonstrated that α1-ARs localize to and signal from the nucleus, whereas AT-R localize to and signal from the sarcolemma in adult cardiac myocytes.
View Article and Find Full Text PDFG protein-coupled receptors that signal through Gα (G receptors), such as α-adrenergic receptors (α-ARs) or angiotensin receptors, share a common proximal signaling pathway that activates phospholipase Cβ1 (PLCβ1), which cleaves phosphatidylinositol 4,5-bisphosphate (PIP) to produce inositol 1,4,5-trisphosphate (IP) and diacylglycerol. Despite these common proximal signaling mechanisms, G receptors produce distinct physiological responses, yet the mechanistic basis for this remains unclear. In the heart, G receptors are thought to induce myocyte hypertrophy through a mechanism termed excitation-transcription coupling, which provides a mechanistic basis for compartmentalization of calcium required for contraction IP-dependent intranuclear calcium required for hypertrophy.
View Article and Find Full Text PDFHeart failure with preserved ejection fraction (HFpEF) is half of all HF, but standard HF therapies are ineffective. Diastolic dysfunction, often secondary to interstitial fibrosis, is common in HFpEF. Previously, we found that supra-physiologic levels of ω3-PUFAs produced by 12 weeks of ω3-dietary supplementation prevented fibrosis and contractile dysfunction following pressure overload [transverse aortic constriction (TAC)], a model that resembles aspects of remodeling in HFpEF.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
February 2015
Background: Induced pluripotent stem cells (iPSCs) can be differentiated into potentially unlimited lineages of cell types for use in autologous cell therapy. However, the efficiency of the differentiation procedure and subsequent function of the iPSC-derived cells may be influenced by epigenetic factors that the iPSCs retain from their tissues of origin; thus, iPSC-derived cells may be more effective for treatment of myocardial injury if the iPSCs were engineered from cardiac-lineage cells, rather than dermal fibroblasts.
Methods And Results: We show that human cardiac iPSCs (hciPSCs) can be generated from cardiac fibroblasts and subsequently differentiated into exceptionally pure (>92%) sheets of cardiomyocytes (CMs).
J Cardiovasc Pharmacol
February 2015
Although convention dictates that G protein-coupled receptors localize to and signal at the plasma membrane, accumulating evidence suggests that G protein-coupled receptors localize to and signal at intracellular membranes, most notably the nucleus. In fact, there is now significant evidence indicating that endogenous alpha-1 adrenergic receptors (α1-ARs) localize to and signal at the nuclei in adult cardiac myocytes. Cumulatively, the data suggest that α1-ARs localize to the inner nuclear membrane, activate intranuclear signaling, and regulate physiologic function in adult cardiac myocytes.
View Article and Find Full Text PDFBackground: Recent studies indicate that a1-adrenergic receptors (a1-ARs) are cardioprotective by preventing cardiac myocyte death and augmenting contractility in heart failure. Although G-protein-coupled receptors are assumed to localize to and signal at the plasma membrane, we previously demonstrated that endogenous a1-ARs localize to the nuclei in adult cardiac myocytes. However, the functional consequence of this nuclear localization remains unclear.
View Article and Find Full Text PDFFollowing myocardial infarction, the prognosis for females is better than males. Estrogen is thought to be protective, but clinical trials with hormone replacement failed to show protection. Here, we sought to identify novel mechanisms that might explain this sex-based difference.
View Article and Find Full Text PDFOur experiments investigated associations of specific isoforms of protein kinase C (PKC) with individual proteins in the cardiac troponin complex. Troponin I (cTnI) associated with PKCepsilon and zeta and troponin T (cTnT) associated with PKC alpha, delta, and epsilon. Based on its association with cTnI, we hypothesized that PKCzeta is a major regulator of myofilament protein phosphorylation.
View Article and Find Full Text PDFPresence of A+U-rich elements (AREs) within 3'-untranslated regions (3'UTRs) of numerous mRNAs has been associated with rapid mRNA turnover; however, the interaction of specific factors with AREs is also associated with mRNA stabilization. Recently, two ARE binding proteins with putative mRNA destabilizing (AUF1) and stabilizing (HuR) properties have been described. However, no direct comparison ofAUF1 and HuR binding properties has been made.
View Article and Find Full Text PDF