HKU4-related coronaviruses are a group of betacoronaviruses belonging to the same merbecovirus subgenus as Middle Eastern Respiratory Syndrome coronavirus (MERS-CoV), which causes severe respiratory illness in humans with a mortality rate of over 30%. The high genetic similarity between HKU4-related coronaviruses and MERS-CoV makes them an attractive subject of research for modeling potential zoonotic spillover scenarios. In this study, we identify a novel coronavirus contaminating agricultural rice RNA sequencing datasets from Wuhan, China.
View Article and Find Full Text PDFBackground: Guideline panels recognize the need to increase the accuracy of identifying women at high risk of developing breast cancer who would benefit from prevention strategies. The characterization of proliferative epithelial disease found in nipple aspirate fluid (PED-NAF) may be a relevant risk factor.
Objective: To comprehensively review the published literature to characterize and summarize abnormal cytology detected by NAF and the association of PED-NAF with subsequent risk of developing breast cancer.
The similarity of an intranasal salmon calcitonin (sCT) employing chlorobutanol as preservative (Calcitonin Salmon Nasal Spray) was compared to the reference listed drug (RLD) employing benzalkonium chloride as preservative (Miacalcin Nasal Spray). Various orthogonal methods assessed peptide structuring, dynamics, and aggregation state. Mass spectrometry, amino acid analysis, and N-terminal sequencing all demonstrated similarity in primary structure.
View Article and Find Full Text PDFThis short review outlines the rationale, challenges, and opportunities for intranasal acetylcholinesterases, in particular galantamine. An in vitro screening model facilitated the development of a therapeutically viable formulation. In vivo testing confirmed achievement of therapeutically relevant drug levels that matched or exceeded those for oral dosing, with a dramatic reduction in undesired emetic responses.
View Article and Find Full Text PDFBackground: Human metapneumovirus (hMPV) is a major respiratory viral pathogen in young children, elderly individuals and immunocompromised patients. Despite its major effects related to bronchiolitis, pneumonia and its potential role in recurrent wheezing episodes, there is still no commercial treatment or vaccine available against this paramyxovirus.
Methods: We tested a therapeutic strategy for hMPV that was based on RNA interference.
Tight junctions (TJs) play an important role in regulating paracellular drug transport. The aim of this study was to identify lipids that rapidly and reversibly alter transepithelial electrical resistance (TER) and/or TJ permeability in epithelial tissue. In this study, we developed a screen for identifying lipids that alter TJ properties.
View Article and Find Full Text PDFInterest in intranasal (IN) administration as a non-invasive route for drug delivery continues to grow rapidly. The nasal mucosa offers numerous benefits as a target issue for drug delivery, such as a large surface area for delivery, rapid drug onset, potential for central nervous system delivery, and no first-pass metabolism. A wide variety of therapeutic compounds can be delivered IN, including relatively large molecules such as peptides and proteins, particularly in the presence of permeation enhancers.
View Article and Find Full Text PDFPhage libraries displaying linear or disulfide-constrained peptides often yield weak binders, upon screening against a target, and must be optimized to improve affinity. The disadvantages of libraries based on larger complex proteins, such as single chain antibodies, have stimulated interest in the development of smaller nonimmunoglobulin protein scaffolds. A promising candidate is the Trp cage motif, a 20-residue C-terminal sequence of exendin-4.
View Article and Find Full Text PDFThe purpose of the current investigation was to optimize an intranasal (IN) galantamine (an acetylcholinesterase inhibitor used for treatment of Alzheimer's disease) formulation using an in vitro tissue model, to correlate those results to in vivo bioavailability, and to compare emetic response to oral dosing. A design-of-experiments (DOE) based formulation screening employing an in vitro tissue model of human nasal epithelium was used to assess drug permeability, tight junction modulation, and cellular toxicity. In vivo studies in rats compared pharmacokinetic (PK) profiles of different formulations dosed intranasally.
View Article and Find Full Text PDFPreviously, a novel tight junction modulating (TJM) peptide was described affording a transient, reversible lowering of transepithelial electrical resistance (TER) in an in vitro model of nasal epithelial tissue. In the current report, this peptide has been further evaluated for utility as an excipient in transepithelial drug formulations. Chemical stability was optimal at neutral to acidic pH when stored at or below room temperature, conditions relevant to therapeutic formulations.
View Article and Find Full Text PDFExpert Opin Drug Deliv
March 2005
New approaches for enhancing intranasal drug delivery based on recent discoveries on the molecular biology of tight junctions (TJ) are significantly improving the bioavailability of 'non-Lipinsky' small molecules, and peptide, protein and oligonucleotide drugs. As knowledge of the structure and function of the TJ has developed, so has the ability to identify mechanism-based TJ modulators using high-throughput molecular biology-based screening methods. The present review focuses on recent developments on the TJ protein complex as a lipid raft-like membrane microdomain, the emerging role of unique endocytic pathways in regulating TJ dynamics, and the utility of techniques such as RNA interference and phage display to study TJ components and identify novel peptides and related molecules that can modulate their function.
View Article and Find Full Text PDFThe goal of the current study was to develop an intranasal (IN) formulation of the acetylcholinesterase inhibitor galantamine, an important therapeutic for treating Alzheimer's disease. To allow for delivering a therapeutically relevant dose, it was necessary to greatly enhance drug solubility. Various approaches were examined to this end, including adding co-solvents, cyclodextrins, and counterion exchange.
View Article and Find Full Text PDF