Background: Performing Response Evaluation Criteria in Solid Tumor (RECISTS) measurement is a non-trivial task requiring much expertise and time. A deep learning-based algorithm has the potential to assist with rapid and consistent lesion measurement.
Purpose: The aim of this study is to develop and evaluate deep learning (DL) algorithm for semi-automated unidirectional CT measurement of lung lesions.
Background: A growing number of research studies have reported inter-observer variability in sizes of tumours measured from CT scans. It remains unclear whether the conventional statistical measures correctly evaluate the CT measurement consistency for optimal treatment management and decision-making. We compared and evaluated the existing measures for evaluating inter-observer variability in CT measurement of cancer lesions.
View Article and Find Full Text PDFWhile a growing number of research studies have reported the inter-observer variability in computed tomographic (CT) measurements, there are very few interventional studies performed. We aimed to assess whether a peer benchmarking intervention tool may have an influence on reducing interobserver variability in CT measurements and identify possible barriers to the intervention. In this retrospective study, 13 board-certified radiologists repeatedly reviewed 10 CT image sets of lung lesions and hepatic metastases during 3 noncontiguous time periods (T1, T2, T3).
View Article and Find Full Text PDFBackground: The frequency of head computed tomography (CT) imaging for mild head trauma patients has raised safety and cost concerns. Validated clinical decision rules exist in the published literature and on-line sources to guide medical image ordering but are often not used by emergency department (ED) clinicians. Using simulation, we explored whether the presentation of a clinical decision rule (i.
View Article and Find Full Text PDF