Cancer photothermal therapy leverages the capability of photothermal agents to convert light to heat for cancer cell ablation and necrosis. However, most conventional photothermal agents (Au, CuS, Pd, mesoporous silica nanoparticles, and indocyanine green dye) either face scalability challenges or photobleached upon prolonged irradiation which jeopardizes practical applications. Here, asphaltenes-derived carbon dots (ACDs, 5 nm) are rationally engineered as a low-cost and photostable photothermal agent with negligible in vivo cytotoxicity.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2024
Hypothesis: Magnetic particles are widely used in many adsorption and removal processes. Among the many types of magnetic colloids, magnetic Janus particles offer significant possibilities for the effective removal of several components from aqueous solutions. Nevertheless, the synthesis of structures integrating different types of materials requires scalable fabrication processes to overcome the limitations of the available methodologies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Despite the lower toxicity of water-based lubricants over nonrenewable petroleum-based analogues, they face challenges in achieving widespread adoption due to low stability and inadequate friction-reduction performance. To address this, a cost-effective nanoadditive is synthesized by expansive oxidation of asphaltenes to create biocompatible asphaltene-derived carbon dots [(ACDs); 5 nm]. These ACDs exhibit excellent water redispersibility, promoting long-term friction reduction and marking the first use of an asphaltene-based system for friction reduction in water or oil.
View Article and Find Full Text PDFSynovial fluid (SF) is the complex biofluid that facilitates the exceptional lubrication of articular cartilage in joints. Its primary lubricating macromolecules, the linear polysaccharide hyaluronic acid (HA) and the mucin-like glycoprotein proteoglycan 4 (PRG4 or lubricin), interact synergistically to reduce boundary friction. However, the precise manner in which these molecules influence the rheological properties of SF remains unclear.
View Article and Find Full Text PDFAntimicrob Steward Healthc Epidemiol
December 2023
In this controlled study, we found that exposure to ultraviolet-C (UV-C) radiation was able to arrest the growth of selected pathogenic enteric and nonfermenting Gram-negative rods. Further studies are needed to confirm the clinical efficacy and determine optimal implementation strategies for utilizing UV-C terminal disinfection.
View Article and Find Full Text PDFIn this paper, the nonlinear behavior of immiscible viscous fingering in a circular Hele-Shaw cell under the action of different time-dependent injection flow rate schemes is assessed numerically. Unlike previous studies which addressed the infinite viscosity ratio (inviscid-viscous flow), the problem is tackled by paying special attention to flows with finite viscosity ratio (viscous flow) in which the viscosity of the displacing and the displaced fluids can have any arbitrary value. Systematic numerical simulations based on a complex-variable formulation of Cauchy-Green barycentric coordinates are performed at different mobility ratios and capillary numbers with a focus on the late-time fully nonlinear regime.
View Article and Find Full Text PDFElectromagnetic heating is a promising soil remediation method especially in thin formations. The lack of a wide-spread adoption of this method stems from insufficient knowledge of how the complex dielectric properties, that govern propagation of the electromagnetic waves through porous media, change with changing frequency, water saturation, displacement types and flow regimes. To breach these gaps several sets of spontaneous deionized (DI) water imbibition experiments, followed by the primary drainage floods, that were followed by the secondary DI water imbibition floods in confined uniform sand packs were performed.
View Article and Find Full Text PDFWater ecosystem contamination from industrial pollutants is an emerging threat to both humans and native species, making it a point of global concern. In this work, fully biobased aerogels (FBAs) were developed by using low-cost cellulose filament (CF), chitosan (CS), citric acid (CA), and a simple and scalable approach, for water remediation applications. The FBAs displayed superior mechanical properties (up to ∼65 kPa m kg specific Young's modulus and ∼111 kJ/m energy absorption) due to CA acting as a covalent crosslinker in addition to the natural hydrogen bonding and electrostatic interactions between CF and CS.
View Article and Find Full Text PDFEmulsification is a crucial technique for mixing immiscible liquids into droplets in various industries, such as food, cosmetics, biomedicine, agrochemistry, and petrochemistry. Quantitative analysis of the stability is pivotal before the utilization of these emulsions. Differences in X-ray attenuation for emulsion components and surface relaxation of the droplets may contribute to X-ray CT imaging and low-field NMR spectroscopy as viable techniques to quantify emulsion stability.
View Article and Find Full Text PDFA range of Desulfovibrio spp. can reduce metal ions to form metallic nanoparticles that remain attached to their surfaces. The bioreduction of palladium (Pd) has been given considerable attention due to its extensive use in areas of catalysis and electronics and other technological domains.
View Article and Find Full Text PDFThe growth of sulfate-reducing bacteria (SRB) and associated hydrogen sulfide production can be problematic in a range of industries such that inhibition strategies are needed. A range of SRB can reduce metal ions, a strategy that has been utilized for bioremediation, metal recovery, and synthesis of precious metal catalysts. In some instances, the metal remains bound to the cell surface, and the impact of this coating on bacterial cell division and metabolism has not previously been reported.
View Article and Find Full Text PDFA wide range of bacteria can synthesize surface-associated nanoparticles (SANs) through exogenous metal ions reacting with sulfide produced via cysteine metabolism, resulting in the emergence of a biological-nanoparticle hybrid (bionanohybrid). The attached nanoparticles may couple to extracellular electron transfer, facilitating photoelectrochemical processes. While SAN-cell coupling in hybrid organisms is opening a range of biotechnological possibilities, observation of bionanohybrids in nature is not commonly reported and their lab-based behavior remains difficult to control.
View Article and Find Full Text PDFPolymer composites containing ferromagnetic fillers are promising for applications relating to electrical and electronic devices. In this research, the authors modified an ultraviolet light (UV) curable prepolymer to additionally cure upon heating and validated a permanent magnet-based particle alignment system toward fabricating anisotropic magnetic composites. The developed dual-cure acrylate-based resin, reinforced with ferromagnetic fillers, was first tested for its ability to polymerize through UV and heat.
View Article and Find Full Text PDFThe dispersibility and stabilization of silica nanoparticles with surface-capped poly(vinyl acetate) (PVAc) chains are examined in carbon dioxide with four different cosolvents. Three surface coverages of silica-PVAc were formed by using different weight ratios of the silica and PVAc. The dispersibilities of three silica-PVAc nanoparticles in CO with the four cosolvents were tested in a rotatable high-pressure variable-volume view cell.
View Article and Find Full Text PDFMethods that use directed acoustic [14,128] and electric fields [104,115] have shown a promise in oil recovery in the past. These methods are great candidates to not only facilitate oil recovery, but also reduce CO emissions to a minimum. However, they have not found big commercial success due to poor understanding of the underlying mechanisms that facilitate the recovery.
View Article and Find Full Text PDFHypothesis: Understanding and monitoring the film formation of interfacially formed layered films allows for the design of conductive nanocomposite films suitable for strain sensing.
Experiments: To understand the mechanism of interfacial film formation, the hexane/water interface was monitored during the evaporation process via confocal laser scanning microscopy. Scanning electron microscopy and atomic force microscopy were utilized to investigate final film morphology.
Fermentation and dissimilatory manganese (Mn) reduction are inter-related metabolic processes that microbes can perform in anoxic environments. Fermentation is less energetically favorable and is often not considered to compete for organic carbon with dissimilatory metal reduction. Therefore, the aim of our study was to investigate the outcome of the competition for lactate between fermentation and Mn oxide (birnessite) reduction in a mixed microbial community.
View Article and Find Full Text PDFWe report the phase behavior of a dispersion of alumina-coated silica nanoparticles in the presence of an anionic surfactant (sodium fatty alcohol polyoxyethylene ether sulfate), and then describe the influence of surfactant/nanoparticle concentration ratio on the stability of methane foam as a potential fluid for enhanced oil recovery application. The surface tension of the methane/aqueous phase interface, surface charge, and size of the particle aggregates and amount of surfactant adsorption were characterized as a function of surfactant/nanoparticle ratio. Five adsorption stages, which are described in terms of the extent and type of the surfactant coverage on the nanoparticle surface, explain the behavior of the solution at different surfactant/nanoparticle ratios.
View Article and Find Full Text PDFThe emulsification of oil in water by nanoparticles can be facilitated by the addition of costabilizers, such as polymers and surfactants. The enhanced properties of the resulting emulsions are usually attributed to nanoparticle/costabilizer synergy; however, the mechanism of this synergistic effect and its impacts on emulsion stability and microstructure remain unclear. Here, we study the synergistic interaction of graphene oxide (GO) and a high molecular weight anionic polyacrylamide (PAM) in stabilization of paraffin oil/water emulsion systems.
View Article and Find Full Text PDFHypothesis: Microstructural and rheological properties of particle-stabilized emulsions are highly influenced by the nanoparticle properties such as size and surface charge. Surface charge of colloidal particles not only influences the interfacial adsorption but also the interparticle network formed by the non-adsorbed particles in the continuous phase.
Experiments: We have studied oil-in-water emulsions stabilized by cellulose nanocrystals (CNCs) with two different degrees of surface charge.
The application of nanotechnology to the petroleum industry has sparked recent interest in increasing oil recovery, while reducing environmental impact. Nanocellulose is an emerging nanoparticle that is derived from trees or waste stream from wood and fiber industries. Thus, it is taken from a renewable and sustainable source, and could therefore serve as a good alternative to current Enhanced Oil Recovery (EOR) technologies.
View Article and Find Full Text PDFEmulsions are widely used in industrial applications, including in food sciences, cosmetics, and enhanced oil recovery. For these industries, an in depth understanding of the stability and rheological properties of emulsions under both static and dynamic conditions is vital to their successful application. Presented here is a thorough assessment of a model nanoparticle (NP) stabilized dodecane-in-water emulsion as a route to improved understanding of the relationship between NP properties, microstructure and droplet-droplet interactions on the stability and rheological properties of emulsions.
View Article and Find Full Text PDFA novel fabrication process for a single use, low-cost organic solvent sensor has been developed. The process is simple, and the materials are readily available. Carbon nanomaterials are self-assembled at a water/hexane interface, where the hexane phase contains dissolved paraffin wax.
View Article and Find Full Text PDF