Publications by authors named "Steven Ball"

Haptophytes synthesize unique β-glucans containing more β-1,6-linkages than β-1,3 linkages, as a storage polysaccharide. To understand the mechanism of the synthesis, we investigated the roles of Kre6 (yeast 1,6-β-transglycosylase) homologs, PhTGS, in the haptophyte . RNAi of repressed β-glucan accumulation and simultaneously induced lipid production, suggesting that PhTGS is involved in β-glucan synthesis and that the knockdown leads to the alteration of the carbon metabolic flow.

View Article and Find Full Text PDF

Most rhodophytes synthesize semi-amylopectin as a storage polysaccharide, whereas some species in the most primitive class (Cyanidiophyceae) make glycogen. To know the roles of isoamylases in semi-amylopectin synthesis, we investigated the effects of gene ( and )-deficiencies on semi-amylopectin molecular structure and starch granule morphology in (Cyanidiophyceae). Semi-amylopectin content in a -disruption mutant () was not significantly different from that in the control strain, while that in a -disruption mutant () was much lower than those in the control strain, suggesting that CMI294C is essential for semi-amylopectin synthesis.

View Article and Find Full Text PDF

Background: Adrenal Insufficiency (AI) can lead to life-threatening Adrenal Crisis (AC) and Adrenal Death (AD). Parents are trained to prevent, recognise and react to AC but there is little available information on what parents are actually doing at home to manage symptomatic AI.

Methods: Three approaches were taken: (A) A retrospective analysis of patient characteristics in children and young people with AD over a 13-year period, (B) An interview-aided questionnaire to assess the circumstances around AC in children currently in our adrenal clinic, and (C) a separate study of parent perceptions of the administration of parenteral hydrocortisone.

View Article and Find Full Text PDF

Eukaryotes most often synthesize storage polysaccharides in the cytosol or vacuoles in the form of either alpha (glycogen/starch)- or beta-glucosidic (chrysolaminarins and paramylon) linked glucan polymers. In both cases, the glucose can be packed either in water-soluble (glycogen and chrysolaminarins) or solid crystalline (starch and paramylon) forms with different impacts, respectively, on the osmotic pressure, the glucose accessibility, and the amounts stored. Glycogen or starch accumulation appears universal in all free-living unikonts (metazoa, fungi, amoebozoa, etc.

View Article and Find Full Text PDF

The order Chlamydiales includes obligate intracellular pathogens capable of infecting mammals, fishes and amoeba. Unlike other intracellular bacteria for which intracellular adaptation led to the loss of glycogen metabolism pathway, all chlamydial families maintained the nucleotide-sugar dependent glycogen metabolism pathway i.e.

View Article and Find Full Text PDF

A 26-year-old male, with a family history of Paraganglioma Syndrome 4 (PGL4) presented with an 18-month history of paroxysmal headaches, a one-month history of frequent diaphoresis, anxiety attacks and unintentional weight loss of one stone in 2 months. Physical examination and vital parameters were normal. Laboratory studies showed significant elevation of plasma normetanephrines and 3-methoxytyramine while DNA molecular analysis confirmed pathogenic mutation in the SDHB gene and genetic transmission of PGL4.

View Article and Find Full Text PDF

Glaucophyta are members of the Archaeplastida, the founding group of photosynthetic eukaryotes that also includes red algae (Rhodophyta), green algae, and plants (Viridiplantae). Here we present a high-quality assembly, built using long-read sequences, of the ca. 100 Mb nuclear genome of the model glaucophyte Cyanophora paradoxa.

View Article and Find Full Text PDF

Starch synthases (SSs) are responsible for depositing the majority of glucoses in starch. Structural knowledge on these enzymes that is available from the crystal structures of rice granule bound starch synthase (GBSS) and barley SSI provides incomplete information on substrate binding and active site architecture. Here we report the crystal structures of the catalytic domains of SSIV from , of GBSS from the cyanobacterium CLg1 and GBSSI from the glaucophyte , with all three bound to ADP and the inhibitor acarbose.

View Article and Find Full Text PDF

The biosynthesis of sialylated molecules of crucial relevance for eukaryotic cell life is achieved by sialyltransferases (ST) of the CAZy family GT29. These enzymes are widespread in the Deuterostoma lineages and more rarely described in Protostoma, Viridiplantae and various protist lineages raising the question of their presence in the Last eukaryotes Common Ancestor (LECA). If so, it is expected that the main enzymes associated with sialic acids metabolism are also present in protists.

View Article and Find Full Text PDF

Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7.

View Article and Find Full Text PDF

Pharmaceutical research requires pre-clinical testing of new therapeutics using both in-vitro and in-vivo models. However, the species specificity of non-human in-vivo models and the inadequate recapitulation of physiological conditions in-vitro are intrinsic weaknesses. Here we show that perfusion is a vital factor for engineered human tissues to recapitulate key aspects of the tumour microenvironment.

View Article and Find Full Text PDF

Transcriptomics is shedding new light on the relationship between photosynthetic algae and salamander eggs.

View Article and Find Full Text PDF

Branching enzyme (BE) catalyzes the formation of α-1,6-glucosidic linkages in amylopectin and glycogen. The reaction products are variable, depending on the organism sources, and the mechanistic basis for these different outcomes is unclear. Although most cyanobacteria have only one BE isoform belonging to glycoside hydrolase family 13, sp.

View Article and Find Full Text PDF

The plastid originated 1.5 billion years ago through a primary endosymbiosis involving a heterotrophic eukaryote and an ancient cyanobacterium. Phylogenetic and biochemical evidence suggests that the incipient endosymbiont interacted with an obligate intracellular chlamydial pathogen that housed it in an inclusion.

View Article and Find Full Text PDF

Chlamydiales were recently proposed to have sheltered the future cyanobacterial ancestor of plastids in a common inclusion. The intracellular pathogens are thought to have donated those critical transporters that triggered the efflux of photosynthetic carbon and the consequent onset of symbiosis. Chlamydiales are also suspected to have encoded glycogen metabolism TTS (Type Three Secretion) effectors responsible for photosynthetic carbon assimilation in the eukaryotic cytosol.

View Article and Find Full Text PDF

It has been believed that isoamylase (ISA)-type α-glucan debranching enzymes (DBEs) play crucial roles not only in α-glucan degradation but also in the biosynthesis by affecting the structure of glucans, although molecular basis on distinct roles of the individual DBEs has not fully understood. In an attempt to relate the roles of DBEs to their chain-length specificities, we analyzed the chain-length distribution of DBE enzymatic reaction products by using purified DBEs from various sources including rice, cyanobacteria, and bacteria. When DBEs were incubated with phytoglycogen, their chain-length specificities were divided into three groups.

View Article and Find Full Text PDF

At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen.

View Article and Find Full Text PDF

For intracellular pathogens, residence in a vacuole provides a shelter against cytosolic host defense to the cost of limited access to nutrients. The human pathogen Chlamydia trachomatis grows in a glycogen-rich vacuole. How this large polymer accumulates there is unknown.

View Article and Find Full Text PDF

A number of recent papers have brought suggestive evidence for an active role of Chlamydiales in the establishment of the plastid. Chlamydiales define a very ancient group of obligate intracellular bacterial pathogens that multiply in vesicles within eukaryotic phagotrophic host cells such as animals, amoebae or other protists, possibly including the hypothetical phagotroph that internalized the cyanobacterial ancestor of the plastid over a billion years ago. We briefly survey the case for an active role of these ancient pathogens in plastid endosymbiosis.

View Article and Find Full Text PDF

Several cyanobacterial species, including Cyanothece sp. ATCC 51142, remarkably have four isoforms of α-glucan branching enzymes (BEs). Based on their primary structures, they are classified into glycoside hydrolase (GH) family 13 (BE1, BE2 and BE3) or family 57 (GH57 BE).

View Article and Find Full Text PDF

Plastid endosymbiosis defines a process through which a fully evolved cyanobacterial ancestor has transmitted to a eukaryotic phagotroph the hundreds of genes required to perform oxygenic photosynthesis, together with the membrane structures, and cellular compartment associated with this process. In this review, we will summarize the evidence pointing to an active role of Chlamydiales in metabolic integration of free living cyanobacteria, within the cytosol of the last common plant ancestor.

View Article and Find Full Text PDF