Publications by authors named "Steven B Levery"

Background: Global analyses of proteins and their modifications by mass spectrometry are essential tools in cell biology and biomedical research. Analyses of glycoproteins represent particular challenges and we are only at the beginnings of the glycoproteomic era. Some of the challenges have been overcome with N-glycoproteins and proteome-wide analysis of N-glycosylation sites is accomplishable today but only by sacrificing information of structures at individual glycosites.

View Article and Find Full Text PDF

Objective: Several studies have shown an increase in beta cell mass during pregnancy. Somatolactogenic hormones are known to stimulate the proliferation of existing beta cells in rodents whereas the mechanism in humans is still unclear. We hypothesize that in addition to somatolactogenic hormones there are other circulating factors involved in beta cell adaptation to pregnancy.

View Article and Find Full Text PDF

Osseointegration of titanium implants can be improved by organic and inorganic nanocoating of the surface. The aim of our study was to evaluate the effect of organic nanocoating of titanium surface with unmodified and modified pectin Rhamnogalacturonan-Is (RG-Is) isolated from potato and apple with respect to surface properties and osteogenic response in osteoblastic cells. Nanocoatings on titanium surfaces were evaluated by scanning electron microscopy, contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

N-acetylgalactosaminyltransferase (GalNAc)-type (mucin-type) O-glycosylation is an abundant and highly diverse modification of proteins. This type of O-glycosylation is initiated in the Golgi by a large family of up to 20 homologous polypeptide GalNAc-T isoenzymes that transfer GalNAc to Ser, Thr and possibly Tyr residues. These GalNAc residues are then further elongated by a large set of glycosyltransferases to build a variety of complex O-glycan structures.

View Article and Find Full Text PDF

The Chinese hamster ovary cell (CHO) is the major host cell factory for recombinant production of biological therapeutics primarily because of its "human-like" glycosylation features. CHO is used for production of several O-glycoprotein therapeutics including erythropoietin, coagulation factors, and chimeric receptor IgG1-Fc-fusion proteins, however, some O-glycoproteins are not produced efficiently in CHO. We have previously shown that the capacity for O-glycosylation of proteins can be one limiting parameter for production of active proteins in CHO.

View Article and Find Full Text PDF

The most used cancer serum biomarker is the CA125 immunoassay for ovarian cancer that detects the mucin glycoprotein MUC16. Several monoclonal antibodies (mAbs) including OC125 and M11 are used in CA125 assays. However, despite considerable efforts, our knowledge of the molecular characteristics of the recognized epitopes and the role played by glycosylation has remained elusive.

View Article and Find Full Text PDF

The low density lipoprotein receptor (LDLR) is crucial for cholesterol homeostasis and deficiency in LDLR functions cause hypercholesterolemia. LDLR is a type I transmembrane protein that requires O-glycosylation for stable expression at the cell surface. It has previously been suggested that LDLR O-glycosylation is found N-terminal to the juxtamembrane region.

View Article and Find Full Text PDF

The metazoan O-mannose (O-Man) glycoproteome is largely unknown. It has been shown that up to 30% of brain O-glycans are of the O-Man type, but essentially only alpha-dystroglycan (α-DG) of the dystrophin-glycoprotein complex is well characterized as an O-Man glycoprotein. Defects in O-Man glycosylation underlie congenital muscular dystrophies and considerable efforts have been devoted to explore this O-glycoproteome without much success.

View Article and Find Full Text PDF

Osseointegration is important when implants are inserted into the bone and can be improved by biochemical surface coating of the implant. In this paper enzymatically modified rhamnogalacturonan I (RG-I) from apple and lupin was used for biochemical coating of aminated surfaces and the importance of the quality of RG-I, the nature of the binding, the fine structure of RG-I, and its effect on SaOS-2 cell line cultured on coated surfaces was investigated. SaOS-2 cells are osteoblast-like cells and a well-established in vitro model of bone-matrix forming osteoblasts.

View Article and Find Full Text PDF

Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc-type O-glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc-transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues.

View Article and Find Full Text PDF

Previous studies demonstrated that certain glycosphingolipids (GSLs) are involved in various cell functions, such as cell growth and motility. Recent studies showed changes in GSL expression during differentiation of human embryonic stem cells; however, little is known about expression profiles of GSLs in cancer stem cells (CSCs). CSCs are a small subpopulation in cancer and are proposed as cancer-initiating cells, have been shown to be resistant to numerous chemotherapies, and may cause cancer recurrence.

View Article and Find Full Text PDF

Characterizing protein GalNAc-type O-glycosylation has long been a major challenge, and as a result, our understanding of this glycoproteome is particularly poor. Recently, we presented a novel strategy for high throughput identification of O-GalNAc glycosites using zinc finger nuclease gene-engineered "SimpleCell" lines producing homogeneous truncated O-glycosylation. Total lysates of cells were trypsinized and subjected to lectin affinity chromatography enrichment, followed by identification of GalNAc O-glycopeptides by nLC-MS/MS, with electron transfer dissociation employed to specify sites of O-glycosylation.

View Article and Find Full Text PDF

Gastric cancer is preceded by a carcinogenesis pathway that includes gastritis caused by Helicobacter pylori infection, chronic atrophic gastritis that may progress to intestinal metaplasia (IM), dysplasia, and ultimately gastric carcinoma of the more common intestinal subtype. The identification of glycosylation changes in circulating serum proteins in patients with precursor lesions of gastric cancer is of high interest and represents a source of putative new biomarkers for early diagnosis and intervention. This study applies a glycoproteomic approach to identify altered glycoproteins expressing the simple mucin-type carbohydrate antigens T and STn in the serum of patients with gastritis, IM (complete and incomplete subtypes), and control healthy individuals.

View Article and Find Full Text PDF

Glycosylation is the most abundant and complex posttranslational modification to be considered for recombinant production of therapeutic proteins. Mucin-type (N-acetylgalactosamine [GalNAc]-type) O-glycosylation is found in eumetazoan cells but absent in plants and yeast, making these cell types an obvious choice for de novo engineering of this O-glycosylation pathway. We previously showed that transient implementation of O-glycosylation capacity in plants requires introduction of the synthesis of the donor substrate UDP-GalNAc and one or more polypeptide GalNAc-transferases for incorporating GalNAc residues into proteins.

View Article and Find Full Text PDF

Our knowledge of the O-glycoproteome [N-acetylgalactosamine (GalNAc) type] is highly limited. The O-glycoproteome is differentially regulated in cells by dynamic expression of a subset of 20 polypeptide GalNAc-transferases (GalNAc-Ts), and methods to identify important functions of individual GalNAc-Ts are largely unavailable. We recently introduced SimpleCells, i.

View Article and Find Full Text PDF

Mucin-type O-glycosylation is an important post-translational modification that confers a variety of biological properties and functions to proteins. This post-translational modification has a particularly complex and differentially regulated biosynthesis rendering prediction and control of where O-glycans are attached to proteins, and which structures are formed, difficult. Because plants are devoid of GalNAc-type O-glycosylation, we have assessed requirements for establishing human GalNAc O-glycosylation de novo in plants with the aim of developing cell systems with custom-designed O-glycosylation capacity.

View Article and Find Full Text PDF

Glycosphingolipids (GSLs) are well known ubiquitous constituents of all eukaryotic cell membranes, yet their normal biological functions are not fully understood. As with other glycoconjugates and saccharides, solid phase display on microarrays potentially provides an effective platform for in vitro study of their functional interactions. However, with few exceptions, the most widely used microarray platforms display only the glycan moiety of GSLs, which not only ignores potential modulating effects of the lipid aglycone, but inherently limits the scope of application, excluding, for example, the major classes of plant and fungal GSLs.

View Article and Find Full Text PDF

Mucin-type glycosylation [α-N-acetyl-D-galactosamine (α-GalNAc)-O-Ser/Thr] on proteins is initiated biosynthetically by 16 homologous isoforms of GalNAc-Ts (uridine diphosphate-GalNAc:polypeptide N-acetylgalactosaminyltransferases). All the GalNAc-Ts consist of a catalytic domain and a lectin domain. Previous reports of GalNAc-T assays toward peptides and α-GalNAc glycopeptides showed that the lectin domain recognized the sugar on the substrates and affected the reaction; however, the details are not clear.

View Article and Find Full Text PDF

Zinc-finger nuclease (ZFN) gene targeting is emerging as a versatile tool for engineering of multiallelic gene deficiencies. A longstanding obstacle for detailed analysis of glycoproteomes has been the extensive heterogeneities in glycan structures and attachment sites. Here we applied ZFN targeting to truncate the O-glycan elongation pathway in human cells, generating stable 'SimpleCell' lines with homogenous O-glycosylation.

View Article and Find Full Text PDF

Site-specific GalNAc-type O-glycosylation is emerging as an important co-regulator of proprotein convertase (PC) processing of proteins. PC processing is crucial in regulating many fundamental biological pathways and O-glycans in or immediately adjacent to processing sites may affect recognition and function of PCs. Thus, we previously demonstrated that deficiency in site-specific O-glycosylation in a PC site of the fibroblast growth factor, FGF23, resulted in marked reduction in secretion of active unprocessed FGF23, which cause familial tumoral calcinosis and hyperostosis hyperphosphatemia.

View Article and Find Full Text PDF

UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (GalNAc-Ts) constitute a family of up to 20 transferases that initiate mucin-type O-glycosylation. The transferases are structurally composed of catalytic and lectin domains. Two modes have been identified for the selection of glycosylation sites by GalNAc-Ts: confined sequence recognition by the catalytic domain alone, and concerted recognition of acceptor sites and adjacent GalNAc-glycosylated sites by the catalytic and lectin domains, respectively.

View Article and Find Full Text PDF

Cancer associated glycoconjugates are important biomarkers, as exemplified by globo-H, CA125, CA15.3 and CA27.29.

View Article and Find Full Text PDF

A family of neutral glycosphingolipids containing a 3-O-acetyl-sphingosine galactosylceramide (3-SAG) has been characterized. Seven new derivatives of galactosylceramide (GalCer), designated as fast-migrating cerebrosides (FMCs) by TLC retention factor, have been identified. The simplest compounds - FMC-1 and FMC-2 - of this series have been characterized as the 3-SAG containing nonhydroxy and hydroxy fatty acyl, respectively.

View Article and Find Full Text PDF

Identification of disease-specific biomarkers is important to address early diagnosis and management of disease. Aberrant post-translational modifications (PTM) of proteins such as O-glycosylations (O-PTMs) are emerging as triggers of autoantibodies that can serve as sensitive biomarkers. Here we have developed a random glycopeptide bead library screening platform for detection of autoantibodies and other binding proteins.

View Article and Find Full Text PDF

The angiopoietin-like protein 3 (ANGPTL3) is an important inhibitor of the endothelial and lipoprotein lipases and a promising drug target. ANGPTL3 undergoes proprotein convertase processing (RAPR(224)↓TT) for activation, and the processing site contains two potential GalNAc O-glycosylation sites immediately C-terminal (TT(226)). We developed an in vivo model system in CHO ldlD cells that was used to show that O-glycosylation in the processing site blocked processing of ANGPTL3.

View Article and Find Full Text PDF