Ovulation results from the cyclical recruitment of non-renewing, quiescent oocytes for growth. Therefore, the primordial follicles that are established during development from an oocyte encapsulated by granulosa cells are thought to comprise the lifelong ovarian reserve . However, using oocyte lineage tracing in mice, we observed that a subset of oocytes recruited for growth in the first juvenile wave remain paused for many months before continuing growth, ovulation, fertilization and development into healthy offspring.
View Article and Find Full Text PDFTen-eleven translocation (TET) enzymes iteratively oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during mammalian germline reprogramming remains unresolved due to the inability to decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 (Tet1-HxD) and TET1 that stalls oxidation at 5hmC (Tet1-V).
View Article and Find Full Text PDFWhile physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models.
View Article and Find Full Text PDFWhile physiologic stress has long been known to impair mammalian reproductive capacity through hormonal dysregulation, mounting evidence now suggests that stress experienced prior to or during gestation may also negatively impact the health of future offspring. Rodent models of gestational physiologic stress can induce neurologic and behavioral changes that persist for up to three generations, suggesting that stress signals can induce lasting epigenetic changes in the germline. Treatment with glucocorticoid stress hormones is sufficient to recapitulate the transgenerational changes seen in physiologic stress models.
View Article and Find Full Text PDFEpigenetic resetting in germ cells during development de-represses transposable elements (TEs). piRNAs protect fetal germ cells by targeted mRNA destruction and deposition of repressive epigenetic marks. Here, we provide the first evidence for an active piRNA pathway and TE repression in germ cells of human fetal testis.
View Article and Find Full Text PDF