Publications by authors named "Steve Yeh"

Myocardial infarction (MI) mobilizes macrophages, the central protagonists of tissue repair in the infarcted heart. Although necessary for repair, macrophages also contribute to adverse remodeling and progression to heart failure. In this context, specific targeting of inflammatory macrophage activation may attenuate maladaptive responses and enhance cardiac repair.

View Article and Find Full Text PDF

Background: Recent research has shown that the adhesion G protein-coupled receptor F1 ( also known as ) is an oncogene. The evidence is mainly based on high expression of in numerous cancer types, and knockdown can reduce the cell migration, invasion, and proliferation. is, however, mostly expressed in the liver of healthy individuals.

View Article and Find Full Text PDF

Immune cell invasion after the transplantation of solid organs is directed by chemokines binding to glycosaminoglycans (GAGs), creating gradients that guide immune cell infiltration. Renal transplant is the preferred treatment for end stage renal failure, but organ supply is limited and allografts are often injured during transport, surgery or by cytokine storm in deceased donors. While treatment for adaptive immune responses during rejection is excellent, treatment for early inflammatory damage is less effective.

View Article and Find Full Text PDF

We evaluated the potential of AGTR1, the principal receptor for angiotensin II (Ang II) and a member of the G protein-coupled receptor family, for targeted delivery of antisense oligonucleotides (ASOs) in cells and tissues with abundant AGTR1 expression. Ang II peptide ASO conjugates maintained robust AGTR1 signaling and receptor internalization when ASO was placed at the N-terminus of the peptide, but not at C-terminus. Conjugation of Ang II peptide improved ASO potency up to 12- to 17-fold in AGTR1-expressing cells.

View Article and Find Full Text PDF

Inherited cardiomyopathy caused by the p.(Arg14del) pathogenic variant of the phospholamban () gene is characterized by intracardiomyocyte PLN aggregation and can lead to severe dilated cardiomyopathy. We recently reported that pre-emptive depletion of PLN attenuated heart failure (HF) in several cardiomyopathy models.

View Article and Find Full Text PDF

Heart failure (HF) is a major cause of morbidity and mortality worldwide, highlighting an urgent need for novel treatment options, despite recent improvements. Aberrant Ca handling is a key feature of HF pathophysiology. Restoring the Ca regulating machinery is an attractive therapeutic strategy supported by genetic and pharmacological proof of concept studies.

View Article and Find Full Text PDF

Animal studies suggest that the retinal dysfunction in diabetic subjects that precedes overt clinical vasculopathy may be due to a retinal dopamine deficit. We analyzed levels of dopamine (DA) and its primary metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), in the vitreous of diabetic and non-diabetic human subjects. Adult patients undergoing pars plana vitrectomy for non-hemorrhagic indications were prospectively recruited from the Emory Eye Center in Atlanta, GA.

View Article and Find Full Text PDF

Chemerin is a contractile adipokine, produced in liver and fat, and removal of the protein by antisense oligonucleotides (ASO) lowers blood pressure in the normal Sprague Dawley rat. In humans, chemerin is positively associated with blood pressure and obesity so we hypothesized that in a model of hypertension derived from high-fat (HF) feeding, the chemerin ASO would reduce blood pressure more than a high-salt (HS) model. Male Dahl S rats were given a HF (60% kcal fat; age 3-24 wk) or HS diet (4% salt; age 20-24 wk to match age and blood pressure of HF animals).

View Article and Find Full Text PDF

Purpose: This study examines the impact of corneal surface lubricants used during pars plana vitrectomy on corneal edema.

Methods: This prospective, observational, clinical study occurred at an academic institution. Participants were individuals aged 18 years and older who had already consented to undergo pars plana vitrectomy, without pre-existing corneal pathology.

View Article and Find Full Text PDF

Enhancing the functional uptake of antisense oligonucleotide (ASO) in the muscle will be beneficial for developing ASO therapeutics targeting genes expressed in the muscle. We hypothesized that improving albumin binding will facilitate traversal of ASO from the blood compartment to the interstitium of the muscle tissues to enhance ASO functional uptake. We synthesized structurally diverse saturated and unsaturated fatty acid conjugated ASOs with a range of hydrophobicity.

View Article and Find Full Text PDF

Movement of circulating fatty acids (FAs) to parenchymal cells requires their transfer across the endothelial cell (EC) barrier. The multiligand receptor cluster of differentiation 36 (CD36) facilitates tissue FA uptake and is expressed in ECs and parenchymal cells such as myocytes and adipocytes. Whether tissue uptake of FAs is dependent on EC or parenchymal cell CD36, or both, is unknown.

View Article and Find Full Text PDF

Chemerin is an inflammatory adipokine positively associated with hypertension and obesity. The majority of chemerin derives from the liver and adipose tissue, however, their individual contributions to blood pressure are unknown. We began studying chemerin in the normal rat using antisense oligonucleotides (ASO) with whole-body activity (Gen 2.

View Article and Find Full Text PDF

Uncontrolled hypertension is an important contributor to cardiovascular disease. Despite the armamentarium of antihypertensive treatments, there remains a need for novel agents effective in individuals who cannot reach acceptable blood pressure levels. Inhibitors targeting the renin-angiotensin-aldosterone system (RAAS) are widely used but may not optimally inhibit RAAS and demonstrate an acceptable safety profile.

View Article and Find Full Text PDF

Preclinical and clinical data suggest CD40 activation contributes to renal inflammation and injury. We sought to test whether upregulation of CD40 in the kidney is a causative factor of renal pathology and if reduction of renal CD40 expression, using antisense oligonucleotides (ASOs) targeting CD40, would be beneficial in mouse models of glomerular injury and unilateral ureter obstruction. Administration of a Generation 2.

View Article and Find Full Text PDF

Activation of the intrarenal renin angiotensin system (RAS) is believed to play an important role in the development of hypertension and cystogenesis in autosomal dominant polycystic kidney disease (ADPKD). Results of clinical studies testing RAS inhibitors in slowing the progression of cystic disease in ADPKD are inconclusive, and we hypothesized that current RAS inhibitors do not adequately suppress intrarenal RAS. For this study, we compared a novel Gen 2 antisense oligonucleotide (ASO) that inhibits angiotensinogen (Agt) synthesis to lisinopril in adult conditional Pkd1 systemic-knockout mice, a model of ADPKD.

View Article and Find Full Text PDF

We recently showed that Bendavia, a novel mitochondria-targeting peptide, reduced infarction and no-reflow across several experimental models. The purpose of this study was to determine the therapeutic timing and mechanism of action that underlie Bendavia's cytoprotective property. In rabbits exposed to in vivo ischemia/reperfusion (30/180 min), Bendavia administered 20 minutes prior to reperfusion (0.

View Article and Find Full Text PDF

The neutrophil elastase inhibitor sivelestat (ONO-5046) possesses unknown mechanisms of cardioprotection when infused following global ischemia, even in the absence of neutrophils. Since myocardial ischemia-reperfusion injury is strongly associated with endothelial dysfunction and reactive oxygen species (ROS) generation during reperfusion, we have tested the hypothesis that infusion of sivelestat during postischemic low flow would preserve endothelial and contractile function and reduce infarct size through an ROS-mediated mechanism. Isolated male rat hearts, subjected to global ischemia of 25 minutes, were reperfused with low flow with or without sivelestat followed by a full flow reperfusion.

View Article and Find Full Text PDF

Background: The effect of hyperoxygenation at reperfusion, particularly in the setting of cardiac arrest, remains unclear. This issue was studied in a prolonged cardiac arrest model consisting of 25 min cardiac arrest in a rat resuscitated with cardiopulmonary bypass (CPB). The objective of this study was to determine the effect of hyperoxygenation following prolonged cardiac arrest resuscitation on mitochondrial and cardiac function.

View Article and Find Full Text PDF

Mitochondrial electron transport chain (ETC) is the major source of reactive oxygen species during myocardial ischemia-reperfusion (I/R) injury. Ischemic defect and reperfusion-induced injury to ETC are critical in the disease pathogenesis of postischemic heart. The properties of ETC were investigated in an isolated heart model of global I/R.

View Article and Find Full Text PDF

Introduction: Rapid post-ischemic re-oxygenation is necessary to minimize ischemic injury, but itself can induce further reperfusion injury through the induction of reactive oxygen species. Utilization of oxygen within the cell primarily occurs in the mitochondria. The objective of this study was to determine heart mitochondrial function after 1 h of controlled arterial oxygenation following cardiac arrest and restoration of spontaneous circulation (ROSC).

View Article and Find Full Text PDF

Aim Of Study: Isolated hearts used in the study of ischemia-reperfusion induced myocardial reactive oxygen species (ROS) have typically been perfused with crystalloid buffer. Limitations of crystalloid buffer which may exaggerate the production of ROS, include a requirement for higher oxygen tension and the absence of the intrinsic erythrocyte antioxidant defenses. Using a novel recirculating blood-perfused rat heart model, we measured H(2)O(2) concentration in the blood (as an indicator of ROS formation) and tissue glutathione concentration (an overall measure of oxidant stress) following ischemia and reperfusion.

View Article and Find Full Text PDF

Extracting and concentrating mitochondrial protein complexes from gel strips after blue native PAGE (BN-PAGE) can be daunting tasks using the traditional methods, such as electroelution, passive diffusion and centrifugal concentration. We present a simplified gel electrophoresis method to concentrate mitochondrial protein complexes with excellent recovery rate. Mitochondrial complex I present in a long gel strip from BN-PAGE can be easily concentrated into a 0.

View Article and Find Full Text PDF

During cardiac arrest (CA), myocardial perfusion is solely dependent on cardiopulmonary resuscitation (CPR) although closed-chest compressions only provide about 10-20% of normal myocardial perfusion. The study was conducted in a whole animal CPR model to determine whether CPR-generated oxygen delivery preserves or worsens mitochondrial function. Male Sprague-Dawley rats (400-450 g) were randomly divided into four groups: (1) BL (instrumentation only, no cardiac arrest), (2) CA(15) (15 min cardiac arrest without CPR), (3) CA(25) (25 min cardiac arrest without CPR) and (4) CPR (15 min cardiac arrest, followed by 10 min CPR).

View Article and Find Full Text PDF