The response of the metal-organic framework aluminum-1,4-cyclohexanedicarboxylate or Al-CAU-13 (CAU: Christian Albrecht University) to the application of thermal and mechanical stimuli was investigated using synchrotron powder X-ray diffraction (SPXRD). Variable temperature in situ SPXRD data, over the range 80-500 K, revealed a complex evolution of the structure of the water guest containing Al-CAU-13HO, the dehydration process from ca. 310 to 370 K, and also the evolution of the guest free Al-CAU-13 structure between ca.
View Article and Find Full Text PDFEnergy-efficient indoors temperature and humidity control can be realised by using the reversible adsorption and desorption of water in porous materials. Stable microporous aluminium-based metal-organic frameworks (MOFs) present promising water sorption properties for this goal. The development of synthesis routes that make use of available and affordable building blocks and avoid the use of organic solvents is crucial to advance this field.
View Article and Find Full Text PDFC-H activation reactions are generally associated with relatively low turnover numbers (TONs) and high catalyst concentrations due to a combination of low catalyst stability and activity, highlighting the need for recyclable heterogeneous catalysts with stable single-atom active sites. In this work, several palladium loaded metal-organic frameworks (MOFs) were tested as single-site catalysts for the oxidative coupling of arenes (-xylene) C-H/C-H activation. Isolation of the palladium active sites on the MOF supports reduced Pd(0) aggregate formation and thus catalyst deactivation, resulting in higher turnover numbers (TONs) compared to the homogeneous benchmark reaction.
View Article and Find Full Text PDFTwo porphyrin-based metal-organic frameworks (MOFs) containing gallium or indium, [Ga2(OH)2(H2TCPP)]·3DMF·3H2O (Ga-PMOF) and [In2(OH)2(H2TCPP)]·3DMF·4H2O (In-PMOF) (H6TCPP = 4-tetracarboxyphenylporphyrin), were discovered using high-throughput methods. The structure was refined by the Rietveld-method starting from the structure model of Al-PMOF, [Al2(OH)2(H2TCPP)]. The new PMOFs exhibit BET surface areas between 1150 and 1400 m(2) g(-1) and are also porous toward CO2 (Ga-PMOF, 15.
View Article and Find Full Text PDFA continuous flow reactor was developed for the synthesis of porous metal-organic frameworks (MOFs) under mild reaction conditions. Commodity hardware was used to assemble the device, giving it a great degree of flexibility in its configuration. The use of paraffin to encapsulate reactions and also ultrasonic treatment were employed to prevent clogging of the reactor.
View Article and Find Full Text PDFThe metal–organic framework compound [Al(OH)(BDC-Br)] (1) (BDC-Br2− = 5-bromo-1,3-benzenedicarboxylate) denoted CAU-10-Br was synthesised under solvothermal reaction conditions. Its structure was successfully refined by Rietveld methods. The framework is based on the connection of infinite helical chains of cis-corner-sharing AlO6-polyhedra via BDC-Br2− ions.
View Article and Find Full Text PDF