Beliefs-attitudes toward some state of the environment-guide action selection and should be robust to variability but sensitive to meaningful change. Beliefs about volatility (expectation of change) are associated with paranoia in humans, but the brain regions responsible for volatility beliefs remain unknown. The orbitofrontal cortex (OFC) is central to adaptive behavior, whereas the magnocellular mediodorsal thalamus (MDmc) is essential for arbitrating between perceptions and action policies.
View Article and Find Full Text PDFNeurons from multiple prefrontal areas encode several key variables of social gaze interaction. To explore the causal roles of the primate prefrontal cortex in real-life gaze interaction, we applied weak closed-loop microstimulations that were precisely triggered by specific social gaze events. Microstimulations of the orbitofrontal cortex, but not the dorsomedial prefrontal cortex or the anterior cingulate cortex, enhanced momentary dynamic social attention in the spatial dimension by decreasing the distance of fixations relative to a partner's eyes and in the temporal dimension by reducing the inter-looking interval and the latency to reciprocate the other's directed gaze.
View Article and Find Full Text PDFIn recent years, the field of neuroscience has increasingly recognized the importance of studying animal behaviors in naturalistic environments to gain deeper insights into ethologically relevant behavioral processes and neural mechanisms. The common marmoset (), due to its small size, prosocial nature, and genetic proximity to humans, has emerged as a pivotal model toward this effort. However, traditional research methodologies often fail to fully capture the nuances of marmoset social interactions and cooperative behaviors.
View Article and Find Full Text PDFThe prefrontal cortex is extensively involved in social exchange. During dyadic gaze interaction, multiple prefrontal areas exhibit neuronal encoding of social gaze events and context-specific mutual eye contact, supported by a widespread neural mechanism of social gaze monitoring. To explore causal manipulation of real-life gaze interaction, we applied weak closed-loop microstimulations that were precisely triggered by specific social gaze events to three prefrontal areas in monkeys.
View Article and Find Full Text PDFThe orbitofrontal cortex (OFC) is regarded as one of the core brain areas in a variety of value-based behaviors. Over the past two decades, tremendous knowledge about the OFC function was gained from studying the behaviors of single subjects. As a result, our previous understanding of the OFC's function of encoding decision variables, such as the value and identity of choices, has evolved to the idea that the OFC encodes a more complex representation of the task space as a cognitive map.
View Article and Find Full Text PDFVicarious reward, essential to social learning and decision making, is theorized to engage select brain regions similarly to experienced reward to generate a shared experience. However, it is just as important for neural systems to also differentiate vicarious from experienced rewards for social interaction. Here, we investigated the neuronal interaction between the primate anterior cingulate cortex gyrus (ACCg) and the basolateral amygdala (BLA) when social choices made by monkeys led to either vicarious or experienced reward.
View Article and Find Full Text PDFHandb Clin Neurol
August 2022
The amygdala is a hub of subcortical region that is crucial in a wide array of affective and motivation-related behaviors. While early research contributed significantly to our understanding of this region's extensive connections to other subcortical and cortical regions, recent methodological advances have enabled researchers to better understand the details of these circuits and their behavioral contributions. Much of this work has focused specifically on investigating the role of amygdala circuits in social cognition.
View Article and Find Full Text PDFNeurosci Biobehav Rev
October 2022
Although Autism Spectrum Disorder (ASD) is increasing in diagnostic prevalence, treatment options are inadequate largely due to limited understanding of ASD's underlying neural mechanisms. Contributing to difficulties in treatment development is the vast heterogeneity of ASD, from physiological causes to clinical presentations. Recent studies suggest that distinct genetic and neurological alterations may converge onto similar underlying neural circuits.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
August 2022
The influence of neuromodulators on brain activity and behaviour is undeniably profound, yet our knowledge of the underlying mechanisms, or ability to reliably reproduce effects across varying conditions, is still lacking. Oxytocin, a hormone that acts as a neuromodulator in the brain, is an example of this quandary; it powerfully shapes behaviours across nearly all mammalian species, yet when manipulated exogenously can produce unreliable or sometimes unexpected behavioural results across varying contexts. While current research is rapidly expanding our understanding of oxytocin, interactions between oxytocin and other neuromodulatory systems remain underappreciated in the current literature.
View Article and Find Full Text PDFSocial gaze interaction powerfully shapes interpersonal communication. However, compared with social perception, very little is known about the neuronal underpinnings of real-life social gaze interaction. Here, we studied a large number of neurons spanning four regions in primate prefrontal-amygdala networks and demonstrate robust single-cell foundations of interactive social gaze in the orbitofrontal, dorsomedial prefrontal, and anterior cingulate cortices, in addition to the amygdala.
View Article and Find Full Text PDFHuman evolution has been marked by a striking increase in total brain volume relative to body size. While a prominent and characteristic feature of this volumetric shift has been the disproportionate expansion of association cortex across our evolutionary lineage, descent with modification is apparent throughout all neural systems in both human and nonhuman primates. However, despite evidence for the ubiquitous and complex influence of evolutionary forces on brain biology, within the psychological sciences the vast majority of the literature on human brain evolution is entirely corticocentric.
View Article and Find Full Text PDFOxytocin is known to be critical for the formation of social relationships in prairie voles. A new study further explores the role of oxytocin in maintaining an established social relationship, and in recruiting the endocannabinoid system to do so.
View Article and Find Full Text PDFTo competently navigate the world, individuals must flexibly balance distinct aspects of social gaze, orienting toward others and inhibiting orienting responses, depending on the context. These behaviors are often disrupted amongst patient populations treated with serotonergic drugs. However, those in the field lack a clear understanding of how the serotonergic system mediates social orienting and inhibiting behaviors.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2022
Humans have an exceptional ability to cooperate relative to many other species. We review the neural mechanisms supporting human cooperation, focusing on the prefrontal cortex. One key feature of human social life is the prevalence of cooperative norms that guide social behavior and prescribe punishment for noncompliance.
View Article and Find Full Text PDFThe evolutionary and neural underpinnings of human prosociality are still being identified. A growing body of evidence suggests that some species find the sight of another individual receiving a reward reinforcing, called vicarious reinforcement, and that this capacity is supported by a network of brain areas including the anterior cingulate cortex (ACC) and the amygdala. At the same time, analyses of autonomic arousal have been increasingly used to contextualize and guide neural research, especially for studies of reward processing.
View Article and Find Full Text PDFIn order to understand ecologically meaningful social behaviors and their neural substrates in humans and other animals, researchers have been using a variety of social stimuli in the laboratory with a goal of extracting specific processes in real-life scenarios. However, certain stimuli may not be sufficiently effective at evoking typical social behaviors and neural responses. Here, we review empirical research employing different types of social stimuli by classifying them into five levels of naturalism.
View Article and Find Full Text PDFLocated medially within the temporal lobes, the amygdala is a formation of heterogenous nuclei that has emerged as a target for investigations into the neural bases of both primitive and complex behaviors. Although modern neuroscience has eschewed the practice of assigning broad functions to distinct brain regions, the amygdala has classically been associated with regulating negative emotional processes (such as fear or aggression), primarily through research performed in rodent models. Contemporary studies, particularly those in non-human primate models, have provided evidence for a role of the amygdala in other aspects of cognition such as valuation of stimuli or shaping social behaviors.
View Article and Find Full Text PDFScholars have long debated whether animals, which display impressive intelligent behaviors, are consciously aware or not. Yet, because many complex human behaviors and high-level functions can be performed without conscious awareness, it was long considered impossible to untangle whether animals are aware or just conditionally or nonconsciously behaving. Here, we developed an empirical approach to address this question.
View Article and Find Full Text PDFThe primate medial frontal cortex is comprised of several brain regions that are consistently implicated in regulating complex social behaviors. The medial frontal cortex is also critically involved in many non-social behaviors, such as those involved in reward, affective, and decision-making processes, broadly implicating the fundamental role of the medial frontal cortex in internally guided cognition. An essential question therefore is what unique contributions, if any, does the medial frontal cortex make to social behaviors? In this chapter, we outline several neural algorithms necessary for mediating adaptive social interactions and discuss selected evidence from behavioral neurophysiology experiments supporting the role of the medial frontal cortex in implementing these algorithms.
View Article and Find Full Text PDF