Publications by authors named "Steve Vanlanduit"

This study focuses on refining growth-rate-based drug response metrics for patient-derived tumor organoid screening using brightfield live-cell imaging. Traditional metrics like Normalized Growth Rate Inhibition (GR) and Normalized Drug Response (NDR) have been used to assess organoid responses to anticancer treatments but face limitations in accurately quantifying cytostatic and cytotoxic effects across varying growth rates. Here, we introduce the Normalized Organoid Growth Rate (NOGR) metric, specifically developed for brightfield imaging-based assays.

View Article and Find Full Text PDF

The high incidence of oil spills in port areas poses a serious threat to the environment, prompting the need for efficient detection mechanisms. Utilizing automated drones for this purpose can significantly improve the speed and accuracy of oil spill detection. Such advancements not only expedite cleanup operations, reducing environmental harm but also enhance polluter accountability, potentially deterring future incidents.

View Article and Find Full Text PDF

Background: Hyperspectral imaging techniques have emerged as powerful tools for non-invasive investigation of artworks. This paper employs either reflectance imaging spectroscopy (RIS) or macroscopic X-ray fluorescence (MA-XRF) imaging in combination with macroscopic X-ray powder diffraction (MA-XRPD) for state-of-the-art chemical imaging of painted cultural heritage artefacts. While RIS can provide molecular information and MA-XRF can offer elemental distribution maps of paintings of high lateral resolution, the unique advantage of MA-XRPD lies in its ability to visualize the distributions of specific pigments and estimate in a quantitative manner the relative concentrations of the crystalline phases at the surface of artworks.

View Article and Find Full Text PDF

Purpose: Inadequate perfusion is the most common cause of partial flap loss in tissue transfer for post-mastectomy breast reconstruction. The current state-of-the-art uses computed tomography angiography (CTA) to locate the best perforators. Unfortunately, these techniques are expensive and time-consuming and not performed during surgery.

View Article and Find Full Text PDF

In this study, we investigate the potential of cold atmospheric plasma (CAP) as a non-contact excitation device, comparing its performance with an ultrasound transmitter. Utilizing a scanning Laser Doppler Vibrometer (LDV), we visualize the acoustic wavefront generated by a CAP probe and an ultrasound sensor within a designated 50 mm × 50 mm area in front of each probe. Our focus lies in assessing the applicability of a CAP probe for exciting a small polymethyl methacrylate (PMMA) sample.

View Article and Find Full Text PDF

Background: This study explores the repurposing of Auranofin (AF), an anti-rheumatic drug, for treating non-small cell lung cancer (NSCLC) adenocarcinoma and pancreatic ductal adenocarcinoma (PDAC). Drug repurposing in oncology offers a cost-effective and time-efficient approach to developing new cancer therapies. Our research focuses on evaluating AF's selective cytotoxicity against cancer cells, identifying RNAseq-based biomarkers to predict AF response, and finding the most effective co-therapeutic agents for combination with AF.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, characterized by a treatment-resistant and invasive nature. In line with these inherent aggressive characteristics, only a subset of patients shows a clinical response to the standard of care therapies, thereby highlighting the need for a more personalized treatment approach. In this study, we comprehensively unraveled the intra-patient response heterogeneity and intrinsic aggressive nature of PDAC on bulk and single-organoid resolution.

View Article and Find Full Text PDF

In this paper, we introduce a method for automated seaweed growth monitoring by combining a low-cost RGB and stereo vision camera. While current vision-based seaweed growth monitoring techniques focus on laboratory measurements or above-ground seaweed, we investigate the feasibility of the underwater imaging of a vertical seaweed farm. We use deep learning-based image segmentation (DeeplabV3+) to determine the size of the seaweed in pixels from recorded RGB images.

View Article and Find Full Text PDF

We propose a new paradigm for modelling and calibrating laser scanners with rotation symmetry, as is the case for lidars or for galvanometric laser systems with one or two rotating mirrors. Instead of bothering about the intrinsic parameters of a physical model, we use the geometric properties of the device to model it as a specific configuration of lines, which can be recovered by a line-data-driven procedure. Compared to universal data-driven methods that train general line models, our algebraic-geometric approach only requires a few measurements.

View Article and Find Full Text PDF

The focus of this study is to design a backlit vision instrument capable of measuring surface roughness and to discuss its metrological performance compared to traditional measurement instruments. The instrument is a non-contact high-magnification imaging system characterized by short inspection time which opens the perspective of in-line implementation. We combined the use of the modulation transfer function to evaluate the imaging conditions of an electrically tunable lens to obtain an optimally focused image.

View Article and Find Full Text PDF

Patient-derived tumor organoids (PDTOs) hold great promise for preclinical and translational research and predicting the patient therapy response from ex vivo drug screenings. However, current adenosine triphosphate (ATP)-based drug screening assays do not capture the complexity of a drug response (cytostatic or cytotoxic) and intratumor heterogeneity that has been shown to be retained in PDTOs due to a bulk readout. Live-cell imaging is a powerful tool to overcome this issue and visualize drug responses more in-depth.

View Article and Find Full Text PDF

In 3D printing, as in other manufacturing processes, there is a push for zero-defect manufacturing, mainly to avoid waste. To evaluate the quality of the printed parts during the printing process, an accurate 3D measurement method is required. By scanning the part during the buildup, potential nonconformities to tolerances can be detected early on and the printing process could be adjusted to avoid scrapping the part.

View Article and Find Full Text PDF

Background: Patient-derived organoids are invaluable for fundamental and translational cancer research and holds great promise for personalized medicine. However, the shortage of available analysis methods, which are often single-time point, severely impede the potential and routine use of organoids for basic research, clinical practise, and pharmaceutical and industrial applications.

Methods: Here, we developed a high-throughput compatible and automated live-cell image analysis software that allows for kinetic monitoring of organoids, named Organoid Brightfield Identification-based Therapy Screening (OrBITS), by combining computer vision with a convolutional network machine learning approach.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new method using hyperspectral imaging (HSI) for detecting and measuring corrosion products on carbon steel, specifically in the short-wave infrared range.
  • Six carbon steel samples were deliberately corroded and analyzed using both scanning X-ray diffraction (XRD) and HSI, with the XRD data serving as a reference.
  • A random forest regression algorithm was used to create a model that predicts the abundance of corrosion minerals from HSI images alone, achieving results that are visually similar to XRD images with error rates between 3.27% and 13.37%, indicating HSI's potential for corrosion analysis.
View Article and Find Full Text PDF

Melanoma remains a deadly cancer despite significant advances in immune checkpoint blockade and targeted therapies. The incidence of melanoma is also growing worldwide, which highlights the need for novel treatment options and strategic combination of therapies. Here, we investigate non-thermal plasma (NTP), an ionized gas, as a promising, therapeutic option.

View Article and Find Full Text PDF

To automatically evaluate the ergonomics of workers, 3D skeletons are needed. Most ergonomic assessment methods, like REBA, are based on the different 3D joint angles. Thanks to the huge amount of training data, 2D skeleton detectors have become very accurate.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a challenging neoplastic disease, mainly due to the development of resistance to radio- and chemotherapy. Cold atmospheric plasma (CAP) is an alternative technology that can eliminate cancer cells through oxidative damage, as shown in vitro, in ovo, and in vivo. However, how CAP affects the pancreatic stellate cells (PSCs), key players in the invasion and metastasis of PDAC, is poorly understood.

View Article and Find Full Text PDF

In this study, we propose a new method to identify corrosion minerals in carbon steel using hyperspectral imaging (HSI) in the shortwave infrared range (900-1700 nm). Seven samples were artificially corroded using a neutral salt spray test and examined using a hyperspectral camera. A normalized cross-correlation algorithm is used to identify four different corrosion minerals (goethite, magnetite, lepidocrocite and hematite), using reference spectra.

View Article and Find Full Text PDF

Gaze gestures are extensively used in the interactions with agents/computers/robots. Either remote eye tracking devices or head-mounted devices (HMDs) have the advantage of hands-free during the interaction. Previous studies have demonstrated the success of applying machine learning techniques for gaze gesture recognition.

View Article and Find Full Text PDF

Safety is an important issue in human-robot interaction (HRI) applications. Various research works have focused on different levels of safety in HRI. If a human/obstacle is detected, a repulsive action can be taken to avoid the collision.

View Article and Find Full Text PDF

In this article, we report the use of a Confocal Laser Scanning Microscope (CLSM) to apply a qualitative assessment of atmospheric corrosion on steel samples. From the CLSM, we obtain high-resolution images, together with a 3D heightmap. The performance of four different segmentation algorithms that use the high-resolution images as input is qualitatively assessed and discussed.

View Article and Find Full Text PDF

Shape from focus is an accurate, but relatively time-consuming, 3D profilometry technique (compared to e.g., laser triangulation or fringe projection).

View Article and Find Full Text PDF

Knowledge of precise camera poses is vital for multi-camera setups. Camera intrinsics can be obtained for each camera separately in lab conditions. For fixed multi-camera setups, the extrinsic calibration can only be done in situ.

View Article and Find Full Text PDF

Asphalt mixtures are the most common types of pavement material used in the world. Characterizing the mechanical behavior of these complex materials is essential in durable, cost-effective, and sustainable pavement design. One of the important properties of asphalt mixtures is the complex modulus of elasticity.

View Article and Find Full Text PDF

The traditional literature on camera network design focuses on constructing automated algorithms. These require problem-specific input from experts in order to produce their output. The nature of the required input is highly unintuitive, leading to an impractical workflow for human operators.

View Article and Find Full Text PDF