Rails are a phenotypically diverse family of birds that includes 130 species and displays a wide distribution around the world. Here we present annotated genome assemblies for four rails from Aotearoa New Zealand: two native volant species, pūkeko and mioweka , and two endemic flightless species takahē and weka . Using the sequence read data, heterozygosity was found to be lowest in the endemic flightless species and this probably reflects their relatively small populations.
View Article and Find Full Text PDFThe physiological demands of flight exert strong selection pressure on avian morphology and so it is to be expected that the evolutionary loss of flight capacity would involve profound changes in traits. Here, we investigate morphological consequences of flightlessness in a bird family where the condition has evolved repeatedly. The Rallidae include more than 130 recognized species of which over 30 are flightless.
View Article and Find Full Text PDFThis data article provides genome statistics, phylogenetic networks and trees for a phylogenetic study of Southern Hemisphere Buccinulidae marine snails [1]. We present alternative phylogenetic reconstructions using mitochondrial genomic and 45S nuclear ribosomal cassette DNA sequence data, as well as trees based on short-length DNA sequence data. We also investigate the proportion of variable sites per sequence length for a set of mitochondrial and nuclear ribosomal genes, in order to examine the phylogenetic information provided by different DNA markers.
View Article and Find Full Text PDFThe evolutionary significance of spatial habitat gaps has been well recognized since Alfred Russel Wallace compared the faunas of Bali and Lombok. Gaps between islands influence population structuring of some species, and flightless birds are expected to show strong partitioning even where habitat gaps are narrow. We examined the population structure of the most numerous living flightless land bird in New Zealand, Weka (Gallirallus australis).
View Article and Find Full Text PDFRelict species have always beguiled evolutionary biologists and biogeographers, who often view them as fascinating 'living fossils' or remnants of old times. Consequently, they are believed to provide interesting and important information on a vanished past and are used to understand the evolution of clades and biotas. The information that relicts provide can, however, be misleading and overemphasised when it is not remembered that they belong to groups or biotas that are mostly extinct.
View Article and Find Full Text PDFCentral to our understanding of the timing of bird evolution is debate about an apparent conflict between fossil and molecular data. A deep age for higher level taxa within Neoaves is evident from molecular analyses but much remains to be learned about the age of diversification in modern bird families and their evolutionary ecology. In order to better understand the timing and pattern of diversification within the family Rallidae we used a relaxed molecular clock, fossil calibrations, and complete mitochondrial genomes from a range of rallid species analysed in a Bayesian framework.
View Article and Find Full Text PDFSufficient breadth of taxon sampling in major organisms groups is important to identify more realistic biological diversification processes that reveal the degree of historical biogeographic signal and net diversification retained in the current lineage distribution. We examine the mechanisms driving diversity in one of the major avian clades with an exceptional large-scale radiation, the family Rallidae, using the most complete species-level (∼70%) time calibrated hypothesis of evolutionary relationships produced to date. We find that Rallidae exhibit a pattern of diversification involving episodes of range expansion and regional speciation that results in most clades represented in all habitable continents.
View Article and Find Full Text PDFMuseum collections are increasingly subjected to scientific scrutiny, including molecular, isotopic and trace-element analyses. Recent advances have extended analyses from natural history specimens to historical artefacts. We highlight three areas of concern that can influence interpretation of data derived from museum collections: sampling issues associated with museum collection use, methods of analysis, and the value of cross-referencing data with historical documents and data sets.
View Article and Find Full Text PDFMitochondrial genomes of onychophorans (velvet worms) present an interesting problem: Some previous studies reported them lacking several transfer RNA (tRNA) genes, whereas others found that all their tRNA genes were present but severely reduced. To resolve this discrepancy, we determined complete mitochondrial DNA (mtDNA) sequences of the onychophorans Oroperipatus sp. and Peripatoides sympatrica as well as cDNA sequences from 14 and 10 of their tRNAs, respectively.
View Article and Find Full Text PDFWorldwide, parthenogenetic reproduction has evolved many times in the stick insects (Phasmatidae). Many parthenogenetic stick insects show the distribution pattern known as geographic parthenogenesis, in that they occupy habitats that are at higher altitude or latitude compared with their sexual relatives. Although it is often assumed that, in the short term, parthenogenetic populations will have a reproductive advantage over sexual populations; this is not necessarily the case.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
October 2008
New Zealand taxa from the Orthopteran family Anostostomatidae have been shown to consist of three broad groups, Hemiandrus (ground weta), Anisoura/Motuweta (tusked weta) and Hemideina-Deinacrida (tree-giant weta). The family is also present in Australia and New Caledonia, the nearest large land masses to New Zealand. All genera are endemic to their respective countries except Hemiandrus that occurs in New Zealand and Australia.
View Article and Find Full Text PDFThe hybrid stick insect genus Acanthoxyla Uvarov 1944 is unusual for an obligate parthenogen, in the extreme morphological diversity it exhibits that has led to eight species being recognised. The New Zealand sexual species Clitarchus hookeri [White, A. 1846.
View Article and Find Full Text PDFBackground: Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved.
View Article and Find Full Text PDF