ACS Appl Mater Interfaces
October 2023
Microfluidics opens new avenues for materials engineering, as it enables scalable synthesis and provides highly controllable environments for reactions. Herein, we leverage microfluidics to engineer the properties of (bioactive) metal-phenolic network nanoparticles (MPN NPs), an emerging and highly modular nanoparticle platform for the incorporation and delivery of bioactive cargo. By varying the microfluidics operating parameters (flow rate ratio, total flow rate, temperature) and NP composition, we assemble MPN NPs, which consist of poly(ethylene glycol), biomacromolecules, metal ions, and polyphenols.
View Article and Find Full Text PDF