Protein biosynthesis on the ribosome requires accurate reading of the genetic code in mRNA. Two conformational rearrangements in the small ribosomal subunit, a closing of the head and body around the incoming tRNA and an RNA helical switch near the mRNA decoding site, have been proposed to select for complementary base-pairing between mRNA codons and tRNA anticodons. We determined x-ray crystal structures of the WT and a hyper-accurate variant of the Escherichia coli ribosome at resolutions of 10 and 9 A, respectively, revealing that formation of the intact 70S ribosome from its two subunits closes the conformation of the head of the small subunit independent of mRNA decoding.
View Article and Find Full Text PDFCurr Opin Chem Biol
December 2002
Several self-assembling peptide and protein systems that form nanotubes, helical ribbons and fibrous scaffolds have recently emerged as biological materials. Peptides and proteins have also been selected to bind metals, semiconductors and ions, inspiring the design of new materials for a wide range of applications in nano-biotechnology.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2002
Several surfactant-like peptides undergo self-assembly to form nanotubes and nanovesicles having an average diameter of 30-50 nm with a helical twist. The peptide monomer contains 7-8 residues and has a hydrophilic head composed of aspartic acid and a tail of hydrophobic amino acids such as alanine, valine, or leucine. The length of each peptide is approximately equal to 2 nm, similar to that of biological phospholipids.
View Article and Find Full Text PDF