Publications by authors named "Steve S Chen"

Background: Alzheimer's disease (AD) is the most common neurogenerative disorder, making up 70% of total dementia cases with a prevalence of more than 55 million people. Electroencephalogram (EEG) has become a suitable, accurate, and highly sensitive biomarker for the identification and diagnosis of AD.

Methods: In this study, a public database of EEG resting state-closed eye recordings containing 36 AD subjects and 29 normal subjects was used.

View Article and Find Full Text PDF

In this study, we elucidated the mechanism by which human choline kinase-α (hCKα) interacts with nonstructural protein 5A (NS5A) and phosphatidylinositol-4-kinase IIIα (PI4KIIIα), the lipid kinase crucial for maintaining the integrity of virus-induced membranous webs, and modulates hepatitis C virus (HCV) replication. hCKα activity positively modulated phosphatidylinositol-4-phosphate (PI4P) levels in HCV-expressing cells, and hCKα-mediated PI4P accumulation was abolished by AL-9, a PI4KIIIα-specific inhibitor. hCKα colocalized with NS5A and PI4KIIIα or PI4P; NS5A expression increased hCKα and PI4KIIIα colocalization; and hCKα formed a ternary complex with PI4KIIIα and NS5A, supporting the functional interplay of hCKα with PI4KIIIα and NS5A.

View Article and Find Full Text PDF

Unlabelled: Hepatitis C virus (HCV) infection reorganizes cellular membranes to create an active viral replication site named the membranous web (MW). The role that human choline kinase-α (hCKα) plays in HCV replication remains elusive. Here, we first showed that hCKα activity, not the CDP-choline pathway, promoted viral RNA replication.

View Article and Find Full Text PDF

The non-structural protein 5A (NS5A) is a hepatitis C virus (HCV) protein indispensable for the viral life cycle. Many prior papers have pinpointed several serine residues in the low complexity sequence I region of NS5A responsible for NS5A phosphorylation; however, the functions of specific phosphorylation sites remained obscure. Using phosphoproteomics, we identified three phosphorylation sites (serines 222, 235, and 238) in the NS5A low complexity sequence I region.

View Article and Find Full Text PDF

Infection with hepatitis C virus (HCV), a major viral cause of chronic liver disease, frequently progresses to steatosis and cirrhosis, which can lead to hepatocellular carcinoma. HCV infection strongly induces host responses, such as the activation of the unfolded protein response, autophagy and the innate immune response. Upon HCV infection, the host induces the interferon (IFN)-mediated frontline defense to limit virus replication.

View Article and Find Full Text PDF

Autophagy is a lysosome-associated, degradative process that catabolizes cytosolic components to recycle nutrients for further use and maintain cell homeostasis. Hepatitis C virus (HCV) is a major cause of chronic hepatitis, which often leads to end-stage liver-associated diseases and is a significant burden on worldwide public health. Emerging lines of evidence indicate that autophagy plays an important role in promoting the HCV life cycle in host cells.

View Article and Find Full Text PDF

Background: China's healthcare system often struggles to meet the needs of its 900 million people living in rural areas due to major challenges in preventive medicine and management of chronic diseases. Here we address some of these challenges by equipping village doctors (ViDs) with Health Information Technology and developing an electronic health record (EHR) system which collects individual patient information electronically to aid with implementation of chronic disease management programs.

Methods: An EHR system based on a cloud-computing architecture was developed and deployed in Xilingol county of Inner Mongolia using various computing resources (hardware and software) to deliver services over the health network using Internet when available.

View Article and Find Full Text PDF

So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV.

View Article and Find Full Text PDF

Infection with hepatitis C virus (HCV) is a leading risk factor for chronic liver disease progression, including steatosis, cirrhosis, and hepatocellular carcinoma. With approximately 3% of the human population infected worldwide, HCV infection remains a global public health challenge. The efficacy of current therapy is still limited in many patients infected with HCV, thus a greater understanding of pathogenesis in HCV infection is desperately needed.

View Article and Find Full Text PDF

The hepatitis C virus core protein (HCVc) forms the viral nucleocapsid and is involved in viral persistence and pathogenesis, possibly by interacting with host factors to modulate viral replication and cellular functions. Here, we identified 36 cellular protein candidates by one-dimensional SDS-PAGE and LC-MS/MS-based proteomics after affinity purification with HCVc174, a matured form of HCVc from HCV-1b genotype, tagged with biotin and calmodulin-binding peptide/protein A at N- and C-termini, respectively. By pull-down and confocal imaging techniques, we confirmed that heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1), nuclear factor 45 (NF45), and C14orf166 are novel HCVc174-interacting host proteins, known to participate in mRNA metabolism, gene regulation, and microtubule organization, respectively.

View Article and Find Full Text PDF

The envelope glycoprotein gp41 of HIV-1 undergoes structural rearrangement to form a helix hairpin during the virus-mediated fusion. Previous studies to investigate the folding and stability of hairpin did not monitor the end-to-end distance of the molecule. To directly probe the distance change, rhodamine dye was conjugated to the gp41 recombinant near the N- and C-terminal regions to detect the UV absorption and fluorescence intensity changes induced by the chemical denaturant guanidinium chloride (GdmCl).

View Article and Find Full Text PDF

We demonstrated a high level expression and purification of recombinant human immunodeficiency virus type 1 gp41 ectodomain (gp41e-FP) using glass bead approach with a final yield of 12±2mg/L bacterial culture. The proper folding of gp41e-FP encompassing the fusion peptide (FP) was ascertained by circular dichroism (CD) measurement and recognition by NC-1 antibody. The latter assay revealed stabilization of the gp41 coiled coil structure in the presence of liposome dispersion.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved process that catabolizes intracellular components and maintains cellular homeostasis. Autophagy involves the sequestration of cytoplasmic content within a double-membraned autophagosome, and the fusion of the autophagosome with a lysosome to form an autolysosome for subsequent degradation (Fig. 1A).

View Article and Find Full Text PDF

Autophagy, a process for catabolizing cytoplasmic components, has been implicated in the modulation of interactions between RNA viruses and their host. However, the mechanism underlying the functional role of autophagy in the viral life cycle still remains unclear. Hepatitis C virus (HCV) is a single-stranded, positive-sense, membrane-enveloped RNA virus that can cause chronic liver disease.

View Article and Find Full Text PDF

The molecular basis for localization of the human immunodeficiency virus type 1 envelope glycoprotein (Env) in detergent-resistant membranes (DRMs), also called lipid rafts, still remains unclear. The C-terminal cytoplasmic tail of gp41 contains three membrane-interacting, amphipathic alpha-helical sequences, termed lentivirus lytic peptide 2 (LLP-2), LLP-3, and LLP-1, in that order. Here we identify determinants in the cytoplasmic tail which are crucial for Env's association with Triton X-100-resistant rafts.

View Article and Find Full Text PDF

Background: Envelope (E) glycoprotein E2 of the hepatitis C virus (HCV) mediates binding of the virus to target cell receptors. Nevertheless, the precise role of E1 in viral entry remains elusive.

Methods: To understand the involvement of the fusion peptide-like domain positioned at residues 264 to 290 within envelope glycoprotein E1 in HCV infection, mutants with Ala and Asn substitutions for residues conserved between HCV and E proteins of flaviviruses or the fusion proteins of paramyxoviruses were constructed by site-directed mutagenesis and their effects on membrane fusion and viral infectivity were examined.

View Article and Find Full Text PDF

The molecular basis underlying hepatitis C virus (HCV) core protein maturation and morphogenesis remains elusive. We characterized the concerted events associated with core protein multimerization and interaction with membranes. Analyses of core proteins expressed from a subgenomic system showed that the signal sequence located between the core and envelope glycoprotein E1 is critical for core association with endoplasmic reticula (ER)/late endosomes and the core's envelopment by membranes, which was judged by the core's acquisition of resistance to proteinase K digestion.

View Article and Find Full Text PDF

The highly conserved LWYIK motif located immediately proximal to the membrane-spanning domain of the gp41 transmembrane protein of human immunodeficiency virus type 1 has been proposed as being important for the surface envelope (Env) glycoprotein's association with lipid rafts and gp41-mediated membrane fusion. Here we employed substitution and deletion mutagenesis to understand the role of this motif in the virus life cycle. None of the mutants examined affected the synthesis, precursor processing, CD4 binding, oligomerization, or cell surface expression of the Env, nor did they alter Env incorporation into the virus.

View Article and Find Full Text PDF

We previously described a novel mode of downregulation of human immunodeficiency virus type 1 (HIV-1) Gag expression by a cytoplasmic domain fusion protein of the envelope (Env) transmembrane protein, beta-galactosidase (beta-gal)/706-856, which contains the cytoplasmic tail of gp41 fused at the C terminus of Escherichia coli beta-gal. In the present study, we showed that this mediator conferred a dose-dependent dominant interference with virus infectivity. In the context of an HIV-1 provirus, this inhibitor downregulated steady-state Env expression.

View Article and Find Full Text PDF

Human CMV (HCMV) is a widespread human pathogen that causes blindness by inducing retinitis in AIDS patients. Previously, we showed that viral immediate early 2 (IE2) protein may allow HCMV to evade the immune control by killing the Fas receptor-positive T lymphocytes attracted to the infected retina with increased secretion of Fas ligand (FasL). In this study, we further demonstrate that the secreted FasL also kills uninfected Fas-rich bystander retinal cells and that IE2 simultaneously protects the infected cells from undergoing apoptotic death, in part, by activating the expression of cellular FLIP (c-FLIP), an antiapoptotic molecule that blocks the direct downstream executer caspase 8 of the FasL/Fas pathway.

View Article and Find Full Text PDF

To understand the roles of heptad repeat 1(HR1) and HR2 of the spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) in virus-cell interactions, the conserved Leu or Ile residues located at positions 913, 927, 941, and 955 in HR1 and 1151, 1165, and 1179 in HR2 were individually replaced with an alpha-helix-breaker Pro residue. The 913P mutant was expressed mainly as a faster-migrating, lower-molecular-weight S(L) form, while the wild type and all other mutants produced similar levels of both the S(L) form and the slower-migrating, higher-molecular-weight S(H) form. The wild-type S(L) form was processed to the S(H) form, whereas the S(L) form of the 913P mutant was inefficiently converted to the S(H) form after biosynthesis.

View Article and Find Full Text PDF

The cytoplasmic domain of human immunodeficiency virus type 1 (HIV-1) envelope (Env) transmembrane protein gp41 interacts with the viral matrix MA protein, which facilitates incorporation of the trimeric Env complex into the virus. It is thus feasible to design an anti-HIV strategy targeting this interaction. We herein describe that Gag expression can be downregulated by a cytoplasmic domain fusion protein of the Env transmembrane protein, beta-galactosidase (beta-gal)/706-856, which contains the cytoplasmic tail of gp41 fused at the C terminus of Escherichia coli beta-gal.

View Article and Find Full Text PDF

Palmitoylation of the cytoplasmic domain of the human immunodeficiency type virus type 1 (HIV-1) envelope (Env) transmembrane protein, gp41, has been implicated in Env targeting to detergent-resistant lipid rafts, Env incorporation into the virus, and viral infectivity. In contrast, we provide evidence here to show that HIV-1 infectivity, Env targeting to lipid rafts, and Env incorporation into the virus are independent of cytoplasmic tail palmitoylation. The T-cell (T)-tropic HXB2-based virus, which utilizes CXCR4 as the entry coreceptor, carrying a Cys-to-Ser mutation at residue 764 or 837 or at both replicated with wild-type (WT) virus replication kinetics in CD4+ T cells.

View Article and Find Full Text PDF