Purpose: Necrotizing enterocolitis (NEC) is one of the most distressing gastrointestinal emergencies affecting neonates. Amniotic fluid stem cells (AFSC) improve intestinal injury and survival in experimental NEC but are difficult to administer. In this study, we evaluated whether conditioned medium (CM) derived from human AFSC have protective effects.
View Article and Find Full Text PDFBackground: The mechanisms underpinning the regenerative capabilities of mesenchymal stem cells (MSC) were originally thought to reside in their ability to recognise damaged tissue and to differentiate into specific cell types that would replace defective cells. However, recent work has shown that molecules produced by MSCs (secretome), particularly those packaged in extracellular vesicles (EVs), rather than the cells themselves are responsible for tissue repair.
Methods: Here we have produced a secretome from adipose-derived mesenchymal stem cells (ADSC) that is free of exogenous molecules by incubation within a saline solution.
The secretome of human amniotic fluid stem cells (AFSCs) has great potential as a therapeutic agent in regenerative medicine. However, it must be produced in a clinically compliant manner before it can be used in humans. In this study, we developed a means of producing a biologically active secretome from AFSCs that is free of all exogenous molecules.
View Article and Find Full Text PDFPLoS One
April 2016
PLoS One
March 2016
Animals are imbued with adaptive mechanisms spanning from the tissue/organ to the cellular scale which insure that processes of homeostasis are preserved in the landscape of size change. However we and others have postulated that the degree of adaptation is limited and that once outside the normal levels of size fluctuations, cells and tissues function in an aberant manner. In this study we examine the function of muscle in the myostatin null mouse which is an excellent model for hypertrophy beyond levels of normal growth and consequeces of acute starvation to restore mass.
View Article and Find Full Text PDFMammalian aging is accompanied by a progressive loss of skeletal muscle, a process called sarcopenia. Myostatin, a secreted member of the transforming growth factor-β family of signaling molecules, has been shown to be a potent inhibitor of muscle growth. Here, we examined whether muscle growth could be promoted in aged animals by antagonizing the activity of myostatin through the neutralizing activity of the myostatin propeptide.
View Article and Find Full Text PDFStem cells that can be directed to differentiate into specific cell types offer the prospect of a renewable source of replacement cells to treat diseases. This study evaluates the reprogramming of 2 readily available stem cell populations into skeletal muscle. We show for the first time that freshly isolated muscle fibers reprogram bone marrow or white fat stem cells far more efficiently than muscle cell lines.
View Article and Find Full Text PDFObjective: The purpose of this study was to investigate whether any intraoperative variable had a significant effect on extubation time after coronary artery bypass graft surgery.
Design: Study design was a retrospective study.
Setting: Study took place in 1 cardiac center in the United Kingdom that had 1000 cases per year.