Publications by authors named "Steve R Bull"

The precise structural control is known for self-assembly into closed spherical structures (e.g., micelles), but similar control of open structures is much more challenging.

View Article and Find Full Text PDF

The majority of clinically used contrast agents (CAs) for magnetic resonance imaging have low relaxivities and thus require high concentrations for signal enhancement. Research has turned to multivalent, macromolecular CAs to increase CA efficiency. However, previously developed macromolecular CAs do not provide high relaxivities, have limited biocompatibility, and/or do not have a structure that is readily modifiable to tailor to particular applications.

View Article and Find Full Text PDF

Current interest in biomaterials for tissue engineering and drug delivery applications have spurred research into self-assembling peptide amphiphiles (PAs). Nanofiber networks formed from self-assembling PAs can be used as biomaterial scaffolds with the advantage of specificity by the incorporation of peptide-epitopes. Imaging the materials noninvasively will give information as to their fate in vivo.

View Article and Find Full Text PDF

Self-assembled peptide amphiphile nanofibers have been investigated for their potential use as in vivo scaffolds for tissue engineering and drug delivery applications. We report here the synthesis of magnetic resonance (MR) active peptide amphiphile molecules that self-assemble into spherical and fiber-like nanostructures, enhancing T(1) relaxation time. This new class of MR contrast agents can potentially be used to combine high-resolution three-dimensional MR fate mapping of tissue-engineered scaffolds with targeting of specific cellular receptors.

View Article and Find Full Text PDF