Publications by authors named "Steve Park"

Background The United States continues to rank as one of the most expensive healthcare systems in the world, and cataract surgery, the most commonly performed surgery, is one of the primary drivers of healthcare expenditure. Increasing efforts have been made to try to minimize U.S.

View Article and Find Full Text PDF

The native extracellular matrix is continuously remodeled to form complex interconnected network structures that reversibly regulate stem cell behaviors. Both regulation and understanding of its intricate dynamicity can help to modulate numerous cell behaviors. However, neither of these has yet been achieved due to the lack of designing and modeling such complex structures with dynamic controllability.

View Article and Find Full Text PDF

3D printing technologies have been widely used for the rapid prototyping of 3D structures, but their application in a broader context has been hampered by their low printing throughput. For the same structures to be produced in a variety of sizes and materials, each must be printed separately, which increases time and cost. Replicating 3D-printed structures in a variety of sizes using a molding process with size-tunable molds could be a solution, but it has only been applied to simple structures, such as those with tapered or vertical profiles.

View Article and Find Full Text PDF

Advanced epidermal electronic devices, capable of real-time monitoring of physical, physiological, and biochemical signals and administering appropriate therapeutics, are revolutionizing personalized healthcare technology. However, conventional portable electronic devices are predominantly constructed from impermeable and rigid materials, which thus leads to the mechanical and biochemical disparities between the devices and human tissues, resulting in skin irritation, tissue damage, compromised signal-to-noise ratio (SNR), and limited operational lifespans. To address these limitations, a new generation of wearable on-skin electronics built on stretchable and porous substrates has emerged.

View Article and Find Full Text PDF

3D printing has been widely used for on-demand prototyping of complex three-dimensional structures. In biomedical applications, PEDOT:PSS has emerged as a promising material in versatile bioelectronics due to its tissue-like mechanical properties and suitable electrical properties. However, previously developed PEDOT:PSS inks have not been able to fully utilize the advantages of commercial 3D printing due to its long post treatment times, difficulty in high aspect ratio printing, and low conductivity.

View Article and Find Full Text PDF

Integrating gels with human skin through wearables provides unprecedented opportunities for health monitoring technology and artificial intelligence. However, most conductive hydrogels, organogels, and ionogels lack essential environmental stability, biocompatibility, and adhesion for reliable epidermal sensing. In this study, we have developed a liquid metal eutectogel simultaneously possessing superior viscoelasticity, semiflowability, and mechanical rigidity for low interfacial skin impedance, high skin adhesion, and durability.

View Article and Find Full Text PDF

The escalating global threat of infectious diseases, including monkeypox virus (MPXV), necessitates advancements in point-of-care diagnostics, moving beyond the constraints of conventional methods tethered to centralized laboratories. Here, we introduce multiple CRISPR RNA (crRNA)-based biosensors that can directly detect MPXV within 35 minutes without pre-amplification, leveraging the enhanced sensitivity and antifouling attributes of the BSA-based nanocomposite. Multiple crRNAs, strategically targeting diverse regions of the F3L gene of MPXV, are designed and combined to amplify Cas12a activation and its collateral cleavage of reporter probes.

View Article and Find Full Text PDF

Mechanically transformative electronic systems (TESs) built using gallium have emerged as an innovative class of electronics due to their ability to switch between rigid and flexible states, thus expanding the versatility of electronics. However, the challenges posed by gallium's high surface tension and low viscosity have substantially hindered manufacturability, limiting high-resolution patterning of TESs. To address this challenge, we introduce a stiffness-tunable gallium-copper composite ink capable of direct ink write printing of intricate TES circuits, offering high-resolution (~50 micrometers) patterning, high conductivity, and bidirectional soft-rigid convertibility.

View Article and Find Full Text PDF

Development of coating technologies for electrochemical sensors that consistently exhibit antifouling activities in diverse and complex biological environments over extended time is vital for effective medical devices and diagnostics. Here, we describe a micrometer-thick, porous nanocomposite coating with both antifouling and electroconducting properties that enhances the sensitivity of electrochemical sensors. Nozzle printing of oil-in-water emulsion is used to create a 1 micrometer thick coating composed of cross-linked albumin with interconnected pores and gold nanowires.

View Article and Find Full Text PDF

Neuromorphic circuits that can function under extreme deformations are important for various data-driven wearable and robotic applications. Herein, biphasic liquid metal particle (BMP) with unprecedented stretchability and strain-insensitivity (ΔR/R = 1.4@ 1200% strain) is developed to realize a stretchable neuromorphic circuit that mimics a spike-based biologic sensory system.

View Article and Find Full Text PDF

The commercialization of lithium-sulfur (Li-S) batteries has been hampered by diverse challenges, including the shuttle phenomenon and low electrical/ionic conductivity of lithium sulfide and sulfur. To address these issues, extensive research has been devoted to developing multifunctional interlayers. However, interlayers capable of simultaneously suppressing the polysulfide (PS) shuttle and ensuring stable electrical and ionic conductivity are relatively uncommon.

View Article and Find Full Text PDF

Macroscopic assembly offers immense potential for constructing complex systems due to the high design flexibility of the building blocks. In such assembly systems, hydrogels are promising candidates for building blocks due to their versatile chemical compositions and ease of property tuning. However, two major challenges must be addressed to facilitate application in a broader context: the precision of assembly and the quantity of orthogonally matching pairs must both be increased.

View Article and Find Full Text PDF

Deformable semi-solid liquid metal particles (LMP) have emerged as a promising substitute for rigid conductive fillers due to their excellent electrical properties and stable conductance under strain. However, achieving a compact and robust coating of LMP on fibers remains a persistent challenge, mainly due to the incompatibility of conventional coating techniques with LMP. Additionally, the limited durability and absence of initial electrical conductivity of LMP restrict their widespread application.

View Article and Find Full Text PDF

Azetidines are prominent structural scaffolds in bioactive molecules, medicinal chemistry, and ligand design for transition metals. However, state-of-the-art methods cannot be applied to intramolecular hydroamination of allylic amine derivatives despite their underlying potential as one of the most prevalent synthetic precursors to azetidines. Herein, we report an electrocatalytic method for intramolecular hydroamination of allylic sulfonamides to access azetidines for the first time.

View Article and Find Full Text PDF

Thermal homeostasis is an essential physiological function for preserving the optimal state of complex organs within the human body. Inspired by this function, here, we introduce an autonomous thermal homeostatic hydrogel that includes infrared wave reflecting and absorbing materials for improved heat trapping at low temperatures, and a porous structure for enhanced evaporative cooling at high temperatures. Moreover, an optimized auxetic pattern was designed as a heat valve to further amplify heat release at high temperatures.

View Article and Find Full Text PDF

A highly stretchable and tissue-adhesive multifunctional sensor based on structurally engineered islets embedded in ultra-soft hydrogel is reported for monitoring of bladder activity in overactive bladder (OAB) induced rat and anesthetized pig. The use of hydrogel yielded a much lower sensor modulus (1 kPa) compared to that of the bladder (300 kPa), while the strong adhesiveness of the hydrogel (adhesive strength: 260.86 N/m) allowed firm attachment onto the bladder.

View Article and Find Full Text PDF

Dynamic manipulation of supramolecular self-assembled structures is achieved irreversibly or under non-physiological conditions, thereby limiting their biomedical, environmental, and catalysis applicability. In this study, microgels composed of azobenzene derivatives stacked via π-cation and π-π interactions are developed that are electrostatically stabilized with Arg-Gly-Asp (RGD)-bearing anionic polymers. Lateral swelling of RGD-bearing microgels occurs via cis-azobenzene formation mediated by near-infrared-light-upconverted ultraviolet light, which disrupts intermolecular interactions on the visible-light-absorbing upconversion-nanoparticle-coated materials.

View Article and Find Full Text PDF

Robotic skin with human-skin-like sensing ability holds immense potential in various fields such as robotics, prosthetics, healthcare, and industries. To catch up with human skin, numerous studies are underway on pressure sensors integrated on robotic skin to improve the sensitivity and detection range. However, due to the trade-off between them, existing pressure sensors have achieved only a single aspect, either high sensitivity or wide bandwidth.

View Article and Find Full Text PDF

A soft bending sensor based on the inverse pyramid structure is demonstrated, revealing that it can effectively suppress microcrack formation in designated regions, thus allowing the cracks to open gradually with bending in a controlled manner. Such a feature enabled the bending sensor to simultaneously have a wide dynamic range of bending strain (0.025-5.

View Article and Find Full Text PDF

Conventional electronic (e-) skins are a class of thin-film electronics mainly fabricated in laboratories or factories, which is incapable of rapid and simple customization for personalized healthcare. Here a new class of e-tattoos is introduced that can be directly implemented on the skin by facile one-step coating with various designs at multi-scale depending on the purpose of the user without a substrate. An e-tattoo is realized by attaching Pt-decorated carbon nanotubes on gallium-based liquid-metal particles (CMP) to impose intrinsic electrical conductivity and mechanical durability.

View Article and Find Full Text PDF

Integration of rigid components in soft polymer matrix is considered as the most feasible architecture to enable stretchable electronics. However, a method of suppressing cracks at the interface between soft and rigid materials due to excessive and repetitive deformations of various types remains a formidable challenge. Here, we geometrically engineered Ferris wheel-shaped islands (FWIs) capable of effectively suppressing crack propagation at the interface under various deformation modes (stretching, twisting, poking, and crumpling).

View Article and Find Full Text PDF

Liquid metal is being regarded as a promising material for soft electronics owing to its distinct combination of high electrical conductivity comparable to that of metals and exceptional deformability derived from its liquid state. However, the applicability of liquid metal is still limited due to the difficulty in simultaneously achieving its mechanical stability and initial conductivity. Furthermore, reliable and rapid patterning of stable liquid metal directly on various soft substrates at high-resolution remains a formidable challenge.

View Article and Find Full Text PDF

Cell adhesion occurs when integrin recognizes and binds to Arg-Gly-Asp (RGD) ligands present in fibronectin. In this work, submolecular ligand size and spacing are tuned via template-mediated in situ growth of nanoparticles for dynamic macrophage modulation. To tune liganded gold nanoparticle (GNP) size and spacing from 3 to 20 nm, in situ localized assemblies of GNP arrays on nanomagnetite templates are engineered.

View Article and Find Full Text PDF

Iminosemiquinone-linker-based conductive metal-organic frameworks (c-MOFs) have attracted much attention as next-generation electronic materials due to their high electrical conductivity combined with high porosity. However, the utility of such c-MOFs in high-performance devices has been limited to date by the lack of high-quality MOF thin-film processing. Herein, a technique known as the microfluidic-assisted solution shearing combined with post-synthetic rapid crystallization (MASS-PRC) process is introduced to generate a high-quality, flexible, and transparent thin-film of Ni (hexaiminotriphenylene) (Ni (HITP) ) uniformly over a large-area in a high-throughput manner with thickness controllability down to tens of nanometers.

View Article and Find Full Text PDF

The recent global spread of COVID-19 stresses the importance of developing diagnostic testing that is rapid and does not require specialized laboratories. In this regard, nanomaterial thin-film-based immunosensors fabricated via solution processing are promising, potentially due to their mass manufacturability, on-site detection, and high sensitivity that enable direct detection of virus without the need for molecular amplification. However, thus far, thin-film-based biosensors have been fabricated without properly analyzing how the thin-film properties are correlated with the biosensor performance, limiting the understanding of property-performance relationships and the optimization process.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: