Publications by authors named "Steve Pappert"

In this work, the thermo-optic coefficient (TOC) of the silicon-rich amorphous silicon carbide (a-SiC) thin film deposited by plasma-enhanced chemical vapor deposition (PECVD) was characterized. We found that the TOC of the film increases as its silicon content increases. A more than threefold improvement in the TOC was measured, reaching a TOC as high as 1.

View Article and Find Full Text PDF

The design, fabrication, and characterization of a 16-element optical phased array (OPA) using a high index (n = 3.1) silicon-rich silicon nitride (SRN) is demonstrated. We present one-dimensional beam steering with end-fire facet antennas over a wide steering range of >115° at a fixed wavelength of 1525 nm.

View Article and Find Full Text PDF

We propose and demonstrate a passively biased 2 × 2 thermo-optic switch with high power efficiency and fast response time. The device benefits from the highly concentrated optical field of a slot waveguide mode and the strong thermo-optic effect of a nematic liquid crystal (NLC) cladding. The NLC fills the nano-slot region and is aligned by the subwavelength grating inside.

View Article and Find Full Text PDF

The design, fabrication, and characterization of low-loss ultra-compact bends in high-index (=3.1 at =1550) plasma-enhanced chemical vapor deposition silicon-rich silicon nitride (SRN) were demonstrated and utilized to realize efficient, small footprint thermo-optic phase shifter. Compact bends were structured into a folded waveguide geometry to form a rectangular spiral within an area of 65×65µ, having a total active waveguide length of 1.

View Article and Find Full Text PDF

A highly sensitive silicon photonic temperature sensor based on silicon-on-insulator (SOI) platform has been proposed and demonstrated. A two-mode nano-slot waveguide device structure cladded with a nematic liquid crystal (LC), E7, was adopted to facilitate strong light-matter interaction and achieve high sensitivity. The fabricated sensor was characterized by measuring the optical transmission spectra at different ambient temperatures.

View Article and Find Full Text PDF

We demonstrate the thermo-optic properties of silicon-rich silicon nitride (SRN) films deposited using plasma-enhanced chemical vapor deposition (PECVD). Shifts in the spectral response of Mach-Zehnder interferometers (MZIs) as a function of temperature were used to characterize the thermo-optic coefficients of silicon nitride films with varying silicon contents. A clear relation is demonstrated between the silicon content and the exhibited thermo-optic coefficient in silicon nitride films, with the highest achievable coefficient being as high as (1.

View Article and Find Full Text PDF