Mass spectrometry-based targeted proteomics employs heavy isotope-labeled proteins or peptides as standards to improve accuracy and precision. The input sample amount is often determined by the total quantity of endogenous proteins or peptides, as defined by spectrophotometric assays, before the heavy-isotope standards are spiked into the samples. Errors in spectrophotometric measurements, which may be due to low sensitivity or chemical or biological interference, have a direct impact on the quantitative mass spectrometry results.
View Article and Find Full Text PDFMass spectrometry-based protein quantitation is currently used to measure therapeutically relevant protein biomarkers in CAP/CLIA setting to predict likely responses of known therapies. Selected reaction monitoring (SRM) is the method of choice due to its outstanding analytical performance. However, data-independent acquisition (DIA) is now emerging as a proteome-scale clinical assay.
View Article and Find Full Text PDFDeletions and chromosome re-arrangements are common features of cancer cells. We have established a new two-component system reporting on epigenetic silencing or deletion of an actively transcribed gene adjacent to a double-strand break (DSB). Unexpectedly, we find that a targeted DSB results in a minority (<10%) misrepair event of kilobase deletions encompassing the DSB site and transcribed gene.
View Article and Find Full Text PDFThe Cardiomyopathy-associated gene 5 (Cmya5) encodes myospryn, a large tripartite motif (TRIM)-related protein found predominantly in cardiac and skeletal muscle. Cmya5 is an expression biomarker for a number of diseases affecting striated muscle and may also be a schizophrenia risk gene. To further understand the function of myospryn in striated muscle, we searched for additional myospryn paralogs.
View Article and Find Full Text PDFThe working model to describe the mechanisms used to replicate the cancer-associated virus Epstein-Barr virus (EBV) is partly derived from comparisons with other members of the Herpes virus family. Many genes within the EBV genome are homologous across the herpes virus family. Published transcriptome data for the EBV genome during its lytic replication cycle show extensive transcription, but the identification of the proteins is limited.
View Article and Find Full Text PDFWe employ stable-isotope labeling and quantitative mass spectrometry to track histone methylation stability. We show that H3 trimethyl K9 and K27 are slow to be established on new histones and slow to disappear from old histones, with half-lives of multiple cell divisions. By contrast, the transcription-associated marks K4me3 and K36me3 turn over far more rapidly, with half-lives of 6.
View Article and Find Full Text PDFCellular senescence, an irreversible cell cycle arrest induced by a diversity of stimuli, has been considered as an innate tumor suppressing mechanism with implications and applications in cancer therapy. Using a targeted proteomics approach, we show that fibroblasts induced into senescence by expression of oncogenic Ras exhibit a decrease of global acetylation on all core histones, consistent with formation of senescence-associated heterochromatic foci. We also detected clear increases in repressive markers (e.
View Article and Find Full Text PDFEps8 is involved in both cell signalling and receptor trafficking. It is a known phosphorylation substrate for two proteins involved in the fibroblast growth factor receptor (FGFR) signalling pathway: the receptor itself and Src. Here we report a differential proteomic analysis of Eps8 aimed to identify specific FGFR and Src family kinase dependent phosphosites and co-associated phosphodependent binding partners.
View Article and Find Full Text PDFWe have developed a targeted method to quantify all combinations of methylation on an H3 peptide containing lysines 27 and 36 (H3K27-K36). By using stable isotopes that separately label the histone backbone and its methylations, we tracked the rates of methylation and demethylation in myeloma cells expressing high vs. low levels of the methyltransferase MMSET/WHSC1/NSD2.
View Article and Find Full Text PDFA full description of the human proteome relies on the challenging task of detecting mature and changing forms of protein molecules in the body. Large-scale proteome analysis has routinely involved digesting intact proteins followed by inferred protein identification using mass spectrometry. This 'bottom-up' process affords a high number of identifications (not always unique to a single gene).
View Article and Find Full Text PDFThe multiple myeloma SET domain (MMSET) protein is overexpressed in multiple myeloma (MM) patients with the translocation t(4;14). Although studies have shown the involvement of MMSET/Wolf-Hirschhorn syndrome candidate 1 in development, its mode of action in the pathogenesis of MM is largely unknown. We found that MMSET is a major regulator of chromatin structure and transcription in t(4;14) MM cells.
View Article and Find Full Text PDFApplying high-throughput Top-Down MS to an entire proteome requires a yet-to-be-established model for data processing. Since Top-Down is becoming possible on a large scale, we report our latest software pipeline dedicated to capturing the full value of intact protein data in automated fashion. For intact mass detection, we combine algorithms for processing MS1 data from both isotopically resolved (FT) and charge-state resolved (ion trap) LC-MS data, which are then linked to their fragment ions for database searching using ProSight.
View Article and Find Full Text PDFWe employ a stable isotope strategy wherein both histones and their methylations are labeled in synchronized human cells. This allows us to differentiate between old and new methylations on pre-existing versus newly synthesized histones. The strategy is implemented on K79 methylation in an isoform-specific manner for histones H3.
View Article and Find Full Text PDFFibroblast growth factor receptors (FGFR) are cell surface tyrosine kinases that function in cell proliferation and differentiation. Aberrant FGFR signaling occurs in diverse cancers due to gene amplification, but the associated oncogenic mechanisms are poorly understood. Using a proteomics approach, we identified signal transducers and activators of transcription-3 (STAT3) as a receptor-binding partner that is mediated by Tyr(677) phosphorylation on FGFR.
View Article and Find Full Text PDFActivation of signal transduction by the receptor tyrosine kinase, fibroblast growth factor receptor (FGFR), results in a cascade of protein-protein interactions that rely on the occurrence of specific tyrosine phosphorylation events. One such protein recruited to the activated receptor complex is the nonreceptor tyrosine kinase, Src, which is involved in both initiation and termination of further signaling events. To gain a further understanding of the tyrosine phosphorylation events that occur during FGF signaling, with a specific focus on those that are dependent on Src family kinase (SFK) activity, we have applied SILAC combined with chemical inhibition of SFK activity to search for phosphorylation events that are dependent on SFK activity in FGF stimulated cells.
View Article and Find Full Text PDFDespite the availability of ultra-high-resolution mass spectrometers, methods for separation and detection of intact proteins for proteome-scale analyses are still in a developmental phase. Here we report robust protocols for online LC-MS to drive high-throughput top-down proteomics in a fashion similar to that of bottom-up proteomics. Comparative work on protein standards showed that a polymeric stationary phase led to superior sensitivity over a silica-based medium in reversed-phase nanocapillary LC, with detection of proteins >50 kDa routinely accomplished in the linear ion trap of a hybrid Fourier transform mass spectrometer.
View Article and Find Full Text PDFLarge data sets of electron capture dissociation (ECD) mass spectra from proteomic experiments are rich in information; however, extracting that information in an optimal manner is not straightforward. Protein database search engines currently available are designed for low resolution CID data, from which Fourier transform ion cyclotron resonance (FT-ICR) ECD data differs significantly. ECD mass spectra contain both z-prime and z-dot fragment ions (and c-prime and c-dot); ECD mass spectra contain abundant peaks derived from neutral losses from charge-reduced precursor ions; FT-ICR ECD spectra are acquired with a larger precursor m/z isolation window than their low-resolution CID counterparts.
View Article and Find Full Text PDFRecently, software has become available to automate localization of phosphorylation sites from CID data and to assign associated confidence scores. We present an algorithm, SLoMo (Site Localization of Modifications), which extends this capability to ETD/ECD mass spectra. Furthermore, SLoMo caters for both high and low resolution data and allows for site-localization of any UniMod post-translational modification.
View Article and Find Full Text PDFElectron capture dissociation (ECD) allows fragmentation of the phosphopeptide backbone while keeping the labile phospho-amino acid intact. This feature of ECD fragmentation, coupled with the acquisition of mass spectra at high mass accuracy, makes ECD well-suited to phosphorylation mapping. The following methods are designed to focus ECD events on phosphopeptides within a complex peptide sample, either by using phosphoric acid neutral loss peaks as a trigger or by targeted analysis of predetermined precursor masses.
View Article and Find Full Text PDFWe used on-line electron capture dissociation (ECD) for the large scale identification and localization of sites of phosphorylation. Each FT-ICR ECD event was paired with a linear ion trap collision-induced dissociation (CID) event, allowing a direct comparison of the relative merits of ECD and CID for phosphopeptide identification and site localization. Linear ion trap CID was shown to be most efficient for phosphopeptide identification, whereas FT-ICR ECD was superior for localization of sites of phosphorylation.
View Article and Find Full Text PDFWe demonstrate a strategy employing collision-induced dissociation for phosphopeptide discovery, followed by targeted electron capture dissociation (ECD) for site localization. The high mass accuracy and low background noise of the ECD mass spectra allow facile sequencing of coeluting isobaric phosphopeptides, with up to two isobaric phosphopeptides sequenced from a single mass spectrum. In contrast to the previously described neutral loss dependent ECD method, targeted ECD allows analysis of both phosphotyrosine peptides and lower abundance phosphopeptides.
View Article and Find Full Text PDFThe transmembrane receptor 'ROR2' resembles members of the receptor tyrosine kinase family of signalling receptors in sequence but its' signal transduction mechanisms remain enigmatic. This problem has particular importance because mutations in ROR2 are associated with two human skeletal dysmorphology syndromes, recessive Robinow Syndrome (RS) and dominant acting Brachydactyly type B (BDB). Here we show, using a constitutive dimerisation approach, that ROR2 exhibits dimerisation-induced tyrosine kinase activity and the ROR2 C-terminal domain, which is deleted in BDB, is required for recruitment and activation of the non-receptor tyrosine kinase Src.
View Article and Find Full Text PDFExpert Rev Proteomics
April 2007
Protein phosphorylation is a widespread and important post-translational modification. Despite recent advances in phosphoproteomic methods, phosphopeptide identification and site localization remain challenging. Electron capture dissociation has inherent advantages for phosphorylation analysis.
View Article and Find Full Text PDFWe have previously demonstrated the suitability of data-dependent electron capture dissociation (ECD) for incorporation into proteomic strategies. The ability to directly determine sites of phosphorylation is a major advantage of electron capture dissociation; however, the low stoichiometry associated with phosphorylation means that phosphopeptides are often overlooked in data-dependent ECD analyses. In contrast, collision-induced dissociation (CID) tends to result in loss of the labile phosphate group, often at the expense of sequence fragments.
View Article and Find Full Text PDF