Publications by authors named "Steve Lefever"

Next to conventional cancer therapies, immunotherapies such as immune checkpoint inhibitors have broadened the cancer treatment landscape over the past decades. Recent advances in next generation sequencing and bioinformatics technologies have made it possible to identify a patient's own immunogenic neoantigens. These cancer neoantigens serve as important targets for personalized immunotherapy which has the benefit of being more active and effective in targeting cancer cells.

View Article and Find Full Text PDF

A fundamental prerequisite for the efficacy of cancer immunotherapy is the presence of functional, antigen-specific T cells within the tumor. Neoantigen-directed therapy is a promising strategy that aims at targeting the host's immune response against tumor-specific antigens, thereby eradicating cancer cells. Initial forays have been made in clinical environments utilizing vaccines and adoptive cell therapy; however, many challenges lie ahead.

View Article and Find Full Text PDF

We assess the performance of mRNA capture sequencing to identify fusion transcripts in FFPE tissue of different sarcoma types, followed by RT-qPCR confirmation. To validate our workflow, six positive control tumors with a specific chromosomal rearrangement were analyzed using the TruSight RNA Pan-Cancer Panel. Fusion transcript calling by FusionCatcher confirmed these aberrations and enabled the identification of both fusion gene partners and breakpoints.

View Article and Find Full Text PDF

Introduction: Next-generation sequencing applications are becoming indispensable for clinical diagnostics. These experiments require numerous wet- and dry-laboratory steps, each one increasing the probability of a sample swap or contamination. Therefore, identity confirmation at the end of the process is recommended to ensure the right data are used for each patient.

View Article and Find Full Text PDF

In the past decades, the incidence of esophageal adenocarcinoma has increased dramatically in Western populations. Better understanding of disease etiology along with the identification of novel prognostic and predictive biomarkers are urgently needed to improve the dismal survival probabilities. Here, we performed comprehensive RNA (coding and non-coding) profiling in various samples from 17 patients diagnosed with esophageal adenocarcinoma, high-grade dysplastic or non-dysplastic Barrett's esophagus.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that have been shown to play a role in normal development, homeostasis, and disease, including cancer. CircRNAs are formed through a process called back-splicing, which results in a covalently closed loop with a nonlinear back-spliced junction (BSJ). In general, circRNA BSJs are predicted in RNA sequencing data using one of numerous circRNA detection algorithms.

View Article and Find Full Text PDF
Article Synopsis
  • Existing databases of non-coding RNA (ncRNA) are limited because they only include small and polyadenylated RNAs; a new comprehensive atlas includes a wider range from 300 human tissues and cell lines.
  • This study identifies thousands of new ncRNAs, increasing the known catalog by about 8%, and explores their roles in gene regulation using RNA sequencing data.
  • All findings and data are available on the R2 web portal for further research into RNA biology and function.
View Article and Find Full Text PDF

Extracellular RNAs present in biofluids have emerged as potential biomarkers for disease. Where most studies focus on blood-derived fluids, other biofluids may be more informative. We present an atlas of messenger, circular, and small RNA transcriptomes of a comprehensive collection of 20 human biofluids.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) and embryonal tumors share a number of common features, including a compromised G1/S checkpoint. Consequently, these rapidly dividing hESCs and cancer cells undergo elevated levels of replicative stress, inducing genomic instability that drives chromosomal imbalances. In this context, it is of interest that long-term in vitro cultured hESCs exhibit a remarkable high incidence of segmental DNA copy number gains, some of which are also highly recurrent in certain malignancies such as 17q gain (17q+).

View Article and Find Full Text PDF

Background: Immunotherapy represents the future of clinical cancer treatment. The type of cancer cell death determines the antitumor immune response and thereby contributes to the efficacy of anticancer therapy and long-term survival of patients. Induction of immunogenic apoptosis or necroptosis in cancer cells does activate antitumor immunity, but resistance to these cell death modalities is common.

View Article and Find Full Text PDF

Despite the high economic importance of cacao beans, few RNA-based studies have been conducted on this plant material and hence no optimal RNA-extraction has been reported. Moreover, extraction of high-quality RNA from recalcitrant cacao bean tissue has shown many difficulties and requires optimization. Furthermore, cacao beans are mostly found at remote and under-resourced locations, which pressures the outsourcing of such analysis and thereby demands RNA-stable preservation and transportation of cacao beans.

View Article and Find Full Text PDF

The latent cellular reservoir of HIV is recognized as the major barrier to cure from HIV infection. Long non-coding RNAs (lncRNAs) are more tissue and cell type-specific than protein coding genes, and may represent targets of choice for HIV latency reversal. Using two in vitro primary T-cell models, we identified lncRNAs dysregulated in latency.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

In this study, a double-mismatch allele-specific (DMAS) qPCR SNP genotyping method has been designed, tested and validated specifically for cacao, using 65 well annotated international cacao reference accessions retrieved from the Center for Forestry Research and Technology Transfer (CEFORTT) and the International Cocoa Quarantine Centre (ICQC). In total, 42 DMAS-qPCR SNP genotyping assays have been validated, with a 98.05% overall efficiency in calling the correct genotype.

View Article and Find Full Text PDF

The recurrent missense variant in Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3), c.166G>A, p.(Gly56Arg) or G56R, underlies 1%-2% of cases with autosomal dominant retinitis pigmentosa (adRP), a frequent, genetically heterogeneous inherited retinal disease (IRD).

View Article and Find Full Text PDF
Article Synopsis
  • Long intergenic non-coding RNAs (lincRNAs) are important in cancer, especially neuroblastoma, where they help control gene activity.
  • Researchers studied RNA from neuroblastoma tumors and cells to find many lincRNAs that are linked to bad outcomes for patients and are connected to key cancer genes like MYCN, ALK, and PHOX2B.
  • The study also found that certain lincRNAs might help regulate these key genes, showing how they could be important for understanding and treating neuroblastoma better.
View Article and Find Full Text PDF

For a wide range of diseases, SNPs in the genome are the underlying mechanism of dysfunction. Therefore, targeted detection of these variations is of high importance for early diagnosis and (familial) screenings. While allele-specific PCR has been around for many years, its adoption for SNP genotyping or somatic mutation detection has been hampered by its low discriminating power and high costs.

View Article and Find Full Text PDF

Neuroblastoma is a pediatric tumor of the sympathetic nervous system. Its clinical course ranges from spontaneous tumor regression to fatal progression. To investigate the molecular features of the divergent tumor subtypes, we performed genome sequencing on 416 pretreatment neuroblastomas and assessed telomere maintenance mechanisms in 208 of these tumors.

View Article and Find Full Text PDF

In recent years, technological advances in transcriptome profiling revealed that the repertoire of human RNA molecules is more diverse and extended than originally thought. This diversity and complexity mainly derive from a large ensemble of noncoding RNAs. Because of their key roles in cellular processes important for normal development and physiology, disruption of noncoding RNA expression is intrinsically linked to human disease, including cancer.

View Article and Find Full Text PDF

The landscape of somatic copy-number alterations (SCNAs) affecting long non-coding RNAs (lncRNAs) in human cancers remains largely unexplored. While the majority of lncRNAs remain to be functionally characterized, several have been implicated in cancer development and metastasis. Considering the plethora of lncRNAs genes that have been currently reported, it is conceivable that many more lncRNAs might function as oncogenes or tumor suppressor genes.

View Article and Find Full Text PDF

We analyzed molecular data on 2,579 tumors from The Cancer Genome Atlas (TCGA) of four gynecological types plus breast. Our aims were to identify shared and unique molecular features, clinically significant subtypes, and potential therapeutic targets. We found 61 somatic copy-number alterations (SCNAs) and 46 significantly mutated genes (SMGs).

View Article and Find Full Text PDF

Introduction: Despite the established contribution of deregulated microRNA (miRNA) function to carcinogenesis, relatively few miRNA-cancer gene interactions have been validated, making it difficult to appreciate the true complexity of miRNA-cancer gene regulatory networks.

Results: In this effort, we identify miRNA interactomes of 17 well-established cancer genes, involved in various cancer types, through a miRNome-wide 3' UTR reporter screening. Using a novel and performant strategy for high-throughput screening data analysis, we identify 390 interactions, quadrupling the size of the known miRNA interactome for the cancer genes under investigation.

View Article and Find Full Text PDF

Genetically engineered mouse models have proven to be essential tools for unraveling fundamental aspects of cancer biology and for testing novel therapeutic strategies. To optimally serve these goals, it is essential that the mouse model faithfully recapitulates the human disease. Recently, novel mouse models for neuroblastoma have been developed.

View Article and Find Full Text PDF

Background: Seborrheic keratosis (SK) of the outer ear canal is rarely described in literature. Etiological risk factors involved in SK such as exposure to human papillomavirus (HPV) and ultraviolet (UV) light are established but must still be confirmed. In recent years, new insights into the pathogenesis of SKs occurred in the area of molecular pathogenesis.

View Article and Find Full Text PDF