Intermediate wheatgrass (IWG, [Host] Barkworth & D. R. Dewey) has been developed as a perennial grain crop to provide ecosystem services, environmental benefits, and human food.
View Article and Find Full Text PDFPerennial grains have potential to contribute to ecological intensification of food production by enabling the direct harvest of human-edible crops without requiring annual cycles of disturbance and replanting. Studies of prototype perennial grains and other herbaceous perennials point to the ability of agroecosystems including these crops to protect water quality, enhance wildlife habitat, build soil quality, and sequester soil carbon. However, genetic improvement of perennial grain candidates has been hindered by limited investment due to uncertainty about whether the approach is viable.
View Article and Find Full Text PDFArmor-penetrating projectiles and fragments of depleted uranium (DU) have been deposited in soils at weapon-tested sites. Soil samples from these military facilities were analyzed by inductively coupled plasma-optical emission spectroscopy and X-ray diffraction to determine U concentrations and transport across an arid ecosystem. Under arid conditions, both vertical transport driven by evaporation (upward) and leaching (downward) and horizontal transport of U driven by surface runoff in the summer were observed.
View Article and Find Full Text PDFAnalysis of multi-year breeding program data revealed that the genetic architecture of an intermediate wheatgrass population was highly polygenic for both domestication and agronomic traits, supporting the use of genomic selection for new crop domestication. Perennial grains have the potential to provide food for humans and decrease the negative impacts of annual agriculture. Intermediate wheatgrass (IWG, Thinopyrum intermedium, Kernza®) is a promising perennial grain candidate that The Land Institute has been breeding since 2003.
View Article and Find Full Text PDFSustainable agriculture in the future will depend on crops that are tolerant to biotic and abiotic stresses, require minimal input of water and nutrients and can be cultivated with a minimal carbon footprint. Wild plants that fulfill these requirements abound in nature but are typically low yielding. Thus, replacing current high-yielding crops with less productive but resilient species will require the intractable trade-off of increasing land area under cultivation to produce the same yield.
View Article and Find Full Text PDFPerennial grain crops have the potential to improve agricultural sustainability but few existing species produce sufficient grain yield to be economically viable. The outcrossing, allohexaploid, and perennial forage species intermediate wheatgrass (IWG) [Thinopyrum intermedium (Host) Barkworth & D. R.
View Article and Find Full Text PDFACS Earth Space Chem
February 2021
Paternity assignment and genome-wide association analyses for fertility were applied to a Thinopyrum intermedium breeding program. A lack of progeny between combinations of parents was associated with loci near self-incompatibility genes. In outcrossing species such as intermediate wheatgrass (IWG, Thinopyrum intermedium), polycrossing is often used to generate novel recombinants through each cycle of selection, but it cannot track pollen-parent pedigrees and it is unknown how self-incompatibility (SI) genes may limit the number of unique crosses obtained.
View Article and Find Full Text PDFShifting the life cycle of grain crops from annual to perennial would usher in a new era of agriculture that is more environmentally friendly, resilient to climate change, and capable of soil carbon sequestration. Despite decades of work, transforming the annual grain crop wheat (Triticum aestivum) into a perennial has yet to be realized. Direct domestication of wild perennial grass relatives of wheat, such as Thinopyrum intermedium, is an alternative approach.
View Article and Find Full Text PDFBluebunch wheatgrass (referred to as BBWG) [ (Pursh) Á. Löve] is an important rangeland Triticeae grass used for forage, conservation, and restoration. This diploid has the basic genome that occurs also in many polyploid Triticeae species, which serve as a gene reservoir for wheat improvement.
View Article and Find Full Text PDFRhizomes facilitate the wintering and vegetative propagation of many perennial grasses. (johnsongrass) is an aggressive perennial grass that relies on a robust rhizome system to persist through winters and reproduce asexually from its rootstock nodes. This study aimed to sequence and assemble expressed transcripts within the johnsongrass rhizome.
View Article and Find Full Text PDFAllohexaploid (2n = 6x = 42) intermediate wheatgrass (Thinopyrum intermedium), abbreviated IWG, is an outcrossing perennial grass belonging to the tertiary gene pool of wheat. Perenniality would be valuable option for grain production, but attempts to introgress this complex trait from wheat-Thinopyrum hybrids have not been commercially successful. Efforts to breed IWG itself as a dual-purpose forage and grain crop have demonstrated useful progress and applications, but grain yields are significantly less than wheat.
View Article and Find Full Text PDFA species' population structure and history are critical pieces of information that can help guide the use of available native plant materials in restoration treatments and decide what new native plant materials should be developed to meet future restoration needs. In the western United States, (bluebunch wheatgrass; Poaceae) is an important component of grassland and shrubland plant communities and commonly used for restoration due to its drought resistance and competitiveness with exotic weeds. We used next-generation sequencing data to investigate the processes that shaped 's geographic pattern of genetic variation across the Intermountain West.
View Article and Find Full Text PDFSimple sequence repeat technology based on expressed sequence tag (EST-SSR) is a useful genomic tool for genome mapping, characterizing plant species relationships, elucidating genome evolution, and tracing genes on alien chromosome segments. EST-SSR primers developed from three perennial diploid species of Triticeae, Pseudoroegneria spicata (Pursh) Á. Löve (having St genome), Thinopyrum bessarabicum (Savul.
View Article and Find Full Text PDFDevelopment of the first consensus genetic map of intermediate wheatgrass gives insight into the genome and tools for molecular breeding. Intermediate wheatgrass (Thinopyrum intermedium) has been identified as a candidate for domestication and improvement as a perennial grain, forage, and biofuel crop and is actively being improved by several breeding programs. To accelerate this process using genomics-assisted breeding, efficient genotyping methods and genetic marker reference maps are needed.
View Article and Find Full Text PDFThe optimal management of radioactive iodine (RAI) treatment in patients with metastatic thyroid cancer (TC) is still a matter of debate. We retrospectively analyzed 352 patients with RAI-avid metastatic well-differentiated TC treated with I by an empiric fixed activity of 3.7 GBq at Gustave Roussy (GR, = 231) or by personalized activity (2.
View Article and Find Full Text PDFIntermediate wheatgrass (Thinopyrum intermedium (Host) Barkworth & D.R. Dewey), a segmental autoallohexaploid (2n = 6x = 42), is not only an important forage crop but also a valuable gene reservoir for wheat (Triticum aestivum L.
View Article and Find Full Text PDFQuasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic and can be due to a variety of physical mechanisms; it is also well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability.
View Article and Find Full Text PDFRhizomes are prostrate subterranean stems that provide primitive mechanisms of vegetative dispersal, survival, and regrowth of perennial grasses and other monocots. The extent of rhizome proliferation varies greatly among grasses, being absent in cereals and other annuals, strictly confined in caespitose perennials, or highly invasive in some perennial weeds. However, genetic studies of rhizome proliferation are limited and genes controlling rhizomatous growth habit have not been elucidated.
View Article and Find Full Text PDFObjective: Radioactive iodine (RAI) has been associated with hematologic abnormalities. Previous research has shown that even a single dose of RAI can cause changes in the peripheral complete blood count (CBC). It is unclear if the use of dosimetry guidance would prevent the effects of high doses of RAI on bone marrow suppression.
View Article and Find Full Text PDFBackground: Emerging drug-eluting stent technologies are evolving toward the elimination of polymeric component used as the method for modulating drug delivery. Although this technological approach seems to be biologically appealing, the impact of durable polymers and metallic stent surfaces on vascular healing remains unclear. In the present study, we aimed to compare the independent effect of a durable polymer and a metallic stent surface on thrombogenicity and endothelial cell coverage using different in vitro and in vivo experimental models.
View Article and Find Full Text PDFPurpose: To assess the efficacy of a single infusion of radiolabeled anti-prostate-specific membrane antigen (PSMA) monoclonal antibody J591 (lutetium-177; (177)Lu) by prostate-specific antigen (PSA) decline, measurable disease response, and survival.
Experimental Design: In this dual-center phase II study, two cohorts with progressive metastatic castration-resistant prostate cancer received one dose of (177)Lu-J591 (15 patients at 65 mCi/m(2), 17 at 70 mCi/m(2)) with radionuclide imaging. Expansion cohort (n = 15) received 70 mCi/m(2) to verify response rate and examine biomarkers.
Background: Metastatic thyroid cancers that are refractory to radioiodine (iodine-131) are associated with a poor prognosis. In mouse models of thyroid cancer, selective mitogen-activated protein kinase (MAPK) pathway antagonists increase the expression of the sodium-iodide symporter and uptake of iodine. Their effects in humans are not known.
View Article and Find Full Text PDF