Publications by authors named "Steve J Perlman"

Article Synopsis
  • FLASH radiotherapy is a new approach in cancer treatment that aims to reduce harmful side effects by using high radiation doses in a shorter time.
  • Researchers studied how Drosophila melanogaster (fruit flies) responded to different radiation dose rates, comparing ultrahigh dose rates (UHDR) and conventional dose rates (CONV).
  • The results showed that fruit flies exposed to UHDR rates had significantly higher survival and eclosion rates than those treated with CONV, suggesting potential benefits of FLASH therapy for normal tissue protection at certain doses.
View Article and Find Full Text PDF

bacteria are maternally inherited symbionts that commonly infect terrestrial arthropods. Many reach high frequencies in their hosts by manipulating their reproduction, for example by causing reproductive incompatibilities between infected male and uninfected female hosts. However, not all strains manipulate reproduction, and a key unresolved question is how these non-manipulative persist in their hosts, often at intermediate to high frequencies.

View Article and Find Full Text PDF

symbionts are the most successful host-associated microbes on the planet, infecting arthropods and nematodes. Their role in nematodes is particularly enigmatic, with filarial nematode species either 100% infected and dependent on symbionts for reproduction and development, or not at all infected. We have discovered a highly divergent strain of in an insect-parasitic tylenchid nematode, sp.

View Article and Find Full Text PDF
Article Synopsis
  • Cytoplasmic incompatibility (CI) is a reproductive issue seen in arthropods where infected males and uninfected females have low fertility due to maternally inherited symbionts.
  • A new CI symbiont was discovered in a strain of a certain bacterium that affects parasitoid wasps, allowing researchers to induce CI in uninfected insects by transferring the infected hemolymph.
  • Genome sequencing revealed that this symbiont lacks known CI genes from other studied organisms, indicating it evolved CI independently, but contains potential new CI-related genes linked to developmental processes.
View Article and Find Full Text PDF

Obligate symbioses involving intracellular bacteria have transformed eukaryotic life, from providing aerobic respiration and photosynthesis to enabling colonization of previously inaccessible niches, such as feeding on xylem and phloem, and surviving in deep-sea hydrothermal vents. A major challenge in the study of obligate symbioses is to understand how they arise. Because the best studied obligate symbioses are ancient, it is especially challenging to identify early or intermediate stages.

View Article and Find Full Text PDF

Driving X chromosomes (X s) bias their own transmission through males by killing Y-bearing gametes. These chromosomes can in theory spread rapidly in populations and cause extinction, but many are found as balanced polymorphisms or as "cryptic" X s shut down by drive suppressors. The relative likelihood of these outcomes and the evolutionary pathways through which they come about are not well understood.

View Article and Find Full Text PDF

Defensive microbes are of great interest for their roles in arthropod health, disease transmission, and biocontrol efforts. Obligate bacterial passengers of arthropods, such as Spiroplasma, confer protection against the natural enemies of their hosts to improve their own fitness. Although known for less than a decade, Spiroplasma's defensive reach extends to diverse parasites, both microbial and multicellular.

View Article and Find Full Text PDF

Arthropods harbour a variety of selfish genetic elements that manipulate reproduction to be preferentially transmitted to future generations. A major ongoing question is to understand how these elements persist in nature. In this study, we examine the population dynamics of an unusual selfish sex ratio distorter in a recently discovered species of booklouse, Liposcelis sp.

View Article and Find Full Text PDF

Defenses conferred by microbial symbionts play a vital role in the health and fitness of their animal hosts. An important outstanding question in the study of defensive symbiosis is what determines long term stability and effectiveness against diverse natural enemies. In this study, we combine genome and transcriptome sequencing, symbiont transfection and parasite protection experiments, and toxin activity assays to examine the evolution of the defensive symbiosis between Drosophila flies and their vertically transmitted Spiroplasma bacterial symbionts, focusing in particular on ribosome-inactivating proteins (RIPs), symbiont-encoded toxins that have been implicated in protection against both parasitic wasps and nematodes.

View Article and Find Full Text PDF

Diverse selfish genetic elements have evolved the ability to manipulate reproduction to increase their transmission, and this can result in highly distorted sex ratios [1]. Indeed, one of the major explanations for why sex determination systems are so dynamic is because they are shaped by ongoing coevolutionary arms races between sex-ratio-distorting elements and the rest of the genome [2]. Here, we use genetic crosses and genome analysis to describe an unusual sex ratio distortion with striking consequences on genome organization in a booklouse species, Liposcelis sp.

View Article and Find Full Text PDF

Understanding the coevolution of hosts and parasites is a long-standing goal of evolutionary biology. There is a well-developed theoretical framework to describe the evolution of host-parasite interactions under the assumption of direct, two-species interactions, which can result in arms race dynamics or sustained genotype fluctuations driven by negative frequency dependence (Red Queen dynamics). However, many hosts rely on symbionts for defence against parasites.

View Article and Find Full Text PDF

Microbial partners play important roles in the biology and ecology of animals. In insects, maternally transmitted symbionts are especially common and can have host effects ranging from reproductive manipulation to nutrient provisioning and defense against natural enemies. In this study, we report a genus-wide association of ants with the inherited bacterial symbiont We screen ants collected from the wild, including the invasive European fire ant, , and find an extraordinarily high prevalence of this symbiont-8 of 9 species, 42 of 43 colonies, and 250 of 276 individual workers harbored -only one host species was uninfected.

View Article and Find Full Text PDF
Article Synopsis
  • * A study of seven Coccidae species from Israel, Spain, and Cyprus revealed a consistent presence of a specific fungus related to Ophiocordyceps, known for being entomopathogenic, but no common bacteria were found across species.
  • * The findings imply that this Ophiocordyceps-allied fungus might serve as a primary symbiont for Coccidae, indicating a significant evolutionary
View Article and Find Full Text PDF

While it has become increasingly clear that multicellular organisms often harbor microbial symbionts that protect their hosts against natural enemies, the mechanistic underpinnings underlying most defensive symbioses are largely unknown. Spiroplasma bacteria are widespread associates of terrestrial arthropods, and include strains that protect diverse Drosophila flies against parasitic wasps and nematodes. Recent work implicated a ribosome-inactivating protein (RIP) encoded by Spiroplasma, and related to Shiga-like toxins in enterohemorrhagic Escherichia coli, in defense against a virulent parasitic nematode in the woodland fly, Drosophila neotestacea.

View Article and Find Full Text PDF

Many parasitic nematodes have an environmental infective stage that searches for hosts. Olfaction plays an important role in this process, with nematodes navigating their environment using host-emitted and environmental olfactory cues. The interactions between parasitic nematodes and their hosts are also influenced by the olfactory behaviors of the host, since host olfactory preferences drive behaviors that may facilitate or impede parasitic infection.

View Article and Find Full Text PDF

How sex is determined in insects is diverse and dynamic, and includes male heterogamety, female heterogamety, and haplodiploidy. In many insect lineages, sex determination is either completely unknown or poorly studied. We studied sex determination in Psocodea-a species-rich order of insects that includes parasitic lice, barklice, and booklice.

View Article and Find Full Text PDF

Background: Drosophila is an important model for studying the evolution of animal immunity, due to the powerful genetic tools developed for D. melanogaster. However, Drosophila is an incredibly speciose lineage with a wide range of ecologies, natural histories, and diverse natural enemies.

View Article and Find Full Text PDF

The planthopper Hyalesthes obsoletus (Hemiptera: Cixiidae) is an important vector of phytoplasma diseases in grapevine. In the current study, the bacterial community compositions of symbionts of this insect were examined. Two dominant bacterial lineages were identified by mass sequencing: the obligate symbiont Candidatus Sulcia, and a facultative symbiont that is closely related to Pectobacterium sp.

View Article and Find Full Text PDF

Unlabelled: By combining genomics and isotope imaging analysis using high-resolution secondary ion mass spectrometry (NanoSIMS), we examined the function and evolution of Bacteroidales ectosymbionts of the protist Barbulanympha from the hindguts of the wood-eating cockroach Cryptocercus punctulatus In particular, we investigated the structure of ectosymbiont genomes, which, in contrast to those of endosymbionts, has been little studied to date, and tested the hypothesis that these ectosymbionts fix nitrogen. Unlike with most obligate endosymbionts, genome reduction has not played a major role in the evolution of the Barbulanympha ectosymbionts. Instead, interaction with the external environment has remained important for this symbiont as genes for synthesis of transporters, outer membrane proteins, lipopolysaccharides, and lipoproteins have been retained.

View Article and Find Full Text PDF

Plasmodium falciparum and Toxoplasma gondii are widely studied parasites in phylum Apicomplexa and the etiological agents of severe human malaria and toxoplasmosis, respectively. These intracellular pathogens have evolved a sophisticated invasion strategy that relies on delivery of proteins into the host cell, where parasite-derived rhoptry neck protein 2 (RON2) family members localize to the host outer membrane and serve as ligands for apical membrane antigen (AMA) family surface proteins displayed on the parasite. Recently, we showed that T.

View Article and Find Full Text PDF

Vertically transmitted symbionts that protect their hosts against parasites and pathogens are well known from insects, yet the underlying mechanisms of symbiont-mediated defense are largely unclear. A striking example of an ecologically important defensive symbiosis involves the woodland fly Drosophila neotestacea, which is protected by the bacterial endosymbiont Spiroplasma when parasitized by the nematode Howardula aoronymphium. The benefit of this defense strategy has led to the rapid spread of Spiroplasma throughout the range of D.

View Article and Find Full Text PDF

Unlabelled: Trypanosomatid parasites are significant causes of human disease and are ubiquitous in insects. Despite the importance of Drosophila melanogaster as a model of infection and immunity and a long awareness that trypanosomatid infection is common in the genus, no trypanosomatid parasites naturally infecting Drosophila have been characterized. Here, we establish a new model of trypanosomatid infection in Drosophila--Jaenimonas drosophilae, gen.

View Article and Find Full Text PDF

The booklouse, Liposcelis bostrychophila, is a worldwide pest of stored products. For decades, only thelytokous parthenogenetic reproduction was documented in L. bostrychophila.

View Article and Find Full Text PDF

In virtually all multicellular eukaryotes, mitochondria are transmitted exclusively through one parent, usually the mother. In this short review, we discuss some of the major consequences of uniparental transmission of mitochondria, including deleterious effects in males and selection for increased transmission through females. Many of these consequences, particularly sex ratio distortion, have well-studied parallels in other maternally transmitted genetic elements, such as bacterial endosymbionts of arthropods.

View Article and Find Full Text PDF

The hindguts of lower termites and Cryptocercus cockroaches are home to a distinct community of archaea, bacteria, and protists (primarily parabasalids and some oxymonads). Within a host species, the composition of these hindgut communities appears relatively stable, but the evolutionary and ecological factors structuring community composition and stability are poorly understood, as are differential impacts of these factors on protists, bacteria, and archaea. We analyzed the microbial composition of parabasalids and bacteria in the hindguts of Cryptocercus punctulatus and 23 species spanning 4 families of lower termites by pyrosequencing variable regions of the small-subunit rRNA gene.

View Article and Find Full Text PDF