Biol Rev Camb Philos Soc
October 2021
Biological insurance theory predicts that, in a variable environment, aggregate ecosystem properties will vary less in more diverse communities because declines in the performance or abundance of some species or phenotypes will be offset, at least partly, by smoother declines or increases in others. During the past two decades, ecology has accumulated strong evidence for the stabilising effect of biodiversity on ecosystem functioning. As biological insurance is reaching the stage of a mature theory, it is critical to revisit and clarify its conceptual foundations to guide future developments, applications and measurements.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
December 2020
Temperature variability and extremes can have profound impacts on populations and ecological communities. Predicting impacts of thermal variability poses a challenge, because it has both direct physiological effects and indirect effects through species interactions. In addition, differences in thermal performance between predators and prey and nonlinear averaging of temperature-dependent performance can result in complex and counterintuitive population dynamics in response to climate change.
View Article and Find Full Text PDFTerritorial use rights in fisheries (TURFs) are coastal territories assigned to fishermen for the exclusive extraction of marine resources. Recent evidence shows that the incentives that arise from these systems can improve fisheries sustainability. Although research on TURFs has increased in recent years, important questions regarding the social and ecological dynamics underlying their success remain largely unanswered.
View Article and Find Full Text PDFTemperature variation within a year can impact biological processes driving population abundances. The implications for the ecosystem services these populations provide, including food production from marine fisheries, are poorly understood. Whether and how temperature variability impacts fishery yields may depend on the number of harvested species and differences in their responses to varying temperatures.
View Article and Find Full Text PDFFunctional trait analysis is an appealing approach to study differences among biological communities because traits determine species' responses to the environment and their impacts on ecosystem functioning. Despite a rapidly expanding quantitative literature, it remains challenging to conceptualize concurrent changes in multiple trait dimensions ("trait space") and select quantitative functional diversity methods to test hypotheses prior to analysis. To address this need, we present a widely applicable framework for visualizing ecological phenomena in trait space to guide the selection, application, and interpretation of quantitative functional diversity methods.
View Article and Find Full Text PDF