Biotremors are vibrations, usually surface waves along the boundary of a medium, produced by an organism. While substrate-borne vibrations are utilized by different reptile species, true conspecific communication via biotremors has not yet been demonstrated in lizards. Recent research revealed that the veiled chameleon (Chamaeleo calyptratus) produces biotremors.
View Article and Find Full Text PDFThis study extends recent research demonstrating that the veiled chameleon (Chamaeleo calyptratus) can produce and detect biotremors. Chameleons were paired in various social contexts: dominance (male-male; female-female C. calyptratus); courtship (male-female C.
View Article and Find Full Text PDFWhen novel or extreme morphologies arise, they are oft met with the burden of functional trade-offs in other aspects of anatomy, which may limit phenotypic diversification and make particular adaptive peaks inaccessible. Bramids (Perciformes: Bramidae) comprise a small family of 20 extant species of fishes, which are distributed throughout pelagic waters worldwide. Within the Bramidae, the fanfishes ( and ) differ morphologically from the generally stout, laterally compressed species that typify the family.
View Article and Find Full Text PDFThe production of biotremors has been described in veiled chameleons (), but the mechanism by which they are produced is unknown. We gathered muscle activation data via electromyography (EMG), with simultaneous recordings of biotremors using an accelerometer, to test for the role of hyoid muscles in biotremor production. We recorded a mean biotremor frequency of 150.
View Article and Find Full Text PDFNumerous chameleon species possess an out-pocketing of the trachea known as the gular pouch. After surveying more than 250 specimens, representing nine genera and 44 species, we describe two different morphs of the gular pouch. Species of the genera Bradypodion and Chamaeleo, as well as Trioceros goetzei, all possess a single gular pouch (morph one) formed from ventral expansion of soft tissue where the larynx and trachea meet.
View Article and Find Full Text PDFMoles have modified thoracic limbs with hypertrophied pectoral girdle muscles that allow them to apply remarkably high lateral out-forces during the power stroke when burrowing. To further understand the high force capabilities of mole forelimbs, architectural properties of the thoracic limb muscles were quantified in the Eastern mole (Scalopus aquaticus). Architectural properties measured included muscle mass, moment arm, belly length, fascicle length, and pennation angle, and these were used to provide estimates of maximum isometric force, joint torque, and power.
View Article and Find Full Text PDFHere, we document in-vivo bite forces recorded from wild piranhas. Integrating this empirical data with allometry, bite simulations, and FEA, we have reconstructed the bite capabilities and potential feeding ecology of the extinct giant Miocene piranha, Megapiranha paranensis. An anterior bite force of 320 N from the black piranha, Serrasalmus rhombeus, is the strongest bite force recorded for any bony fish to date.
View Article and Find Full Text PDF