Publications by authors named "Steve Hocquet"

We report on a watt range laser system generating picosecond pulses using electro-optical modulation of a 1030 nm single frequency low noise laser diode. Its repetition rate is continuously tunable between 11 and 18 GHz. Over this range, output spectra and pulse characteristics are measured and compared with a numerical simulation.

View Article and Find Full Text PDF

It is known that a linear filter may be easily compensated with its inverse transfer function. However, it was shown that this approach could also be valid even for such a complex nonlinear system as frequency conversion. As a matter of fact, it is possible to at least partly precompensate for distortions occurring within, or even downstream from, frequency conversion crystals with a simple linear optical filter set upstream.

View Article and Find Full Text PDF

High-power lasers, such as the Laser MegaJoule (LMJ), have to be phase modulated to avoid stimulated Brillouin scattering (SBS) that may strongly damage optics at the end of the laser chain. Current spectral broadening on LMJ is performed with a sinusoidal phase modulation. This pure sinusoidal phase modulation leads to inhomogeneous spectral power densities (SPD).

View Article and Find Full Text PDF

Frequency modulation to amplitude modulation (FM-to-AM) conversion is an important issue that can prevent fusion ignition with high power lasers such as the Laser MegaJoule (LMJ). On LMJ, most of the FM-to-AM conversion is expected in the so-called frequency conversion and focusing system, which is a nonlinear system. However, we propose linear transfer functions to compensate the effect of frequency conversion on FM-to-AM conversion.

View Article and Find Full Text PDF

FM-to-AM conversion is an important issue that could prevent fusion ignition with high-power lasers, such as the Laser MegaJoule (LMJ). We first overview the whole problem of FM-to-AM conversion in high-power lasers and we explain why AM spectral content of FM-to-AM conversion is important, although this information was not used in previous studies. We then propose simple analytical models to simulate FM-to-AM conversion in the LMJ frequency conversion system.

View Article and Find Full Text PDF