As described in the companion paper, the synaptic terminal of a cone photoreceptor in macaque monkey makes an average of 35 or 46 basal contacts with the tips of the dendrites of its OFF midget bipolar cell. Each basal contact has one or more symmetrically thickened dense regions. These "Outer Densities," averaging 48 or 67 in number, harbor clusters of ionotropic glutamate receptors and are ~0.
View Article and Find Full Text PDFL and M cones, divided into two groups by absorption spectra, have not been distinguished by structure. Here, we report what may be such a difference. We reconstructed the synaptic terminals of 16 non-S cones and the dendritic arbors of their ON and OFF midget bipolar cells from high-magnification electron micrographs of serial thin sections of a small region of macaque fovea.
View Article and Find Full Text PDFA rule of retinal wiring is that many receptors converge onto fewer bipolar cells and still fewer ganglion cells. However, for each S cone in macaque fovea, there are two S-cone ON bipolar cells and two blue-yellow (BY) ganglion cells. To understand this apparent rule reversal, we reconstructed synaptic patterns of divergence and convergence and determined the basic three-tiered unit of connectivity that repeats across the retina.
View Article and Find Full Text PDFPsychophysical results suggest that the primate visual system is equally sensitive to both the onset and offset of short-wavelength light and that these responses are carried by separate pathways. However, physiological studies of cells in the retina and lateral geniculate nucleus find far fewer OFF-center than ON-center cells whose receptive-field centers are driven by short-wavelength-sensitive (S) cones. To determine whether S cones contact ON and OFF midget bipolar cells as well as (ON) "blue-cone bipolar" cells (Mariani, 1984), we examined 118 contiguous cone terminals and their bipolar cells in electron micrographs of serial sections from macaque foveal retina.
View Article and Find Full Text PDFWe examine the assumptions that the fovea contains equal numbers of inner (invaginating or ON) and outer (flat or OFF) midget bipolar cells and equal numbers of inner and outer diffuse bipolar cells. Based on reconstruction from electron photomicrographs of serial thin sections through the fovea of a macaque monkey, we reject both assumptions. First, every foveal L and M cone is presynaptic to one inner and one outer midget bipolar cell; however, S cones are presynaptic to one outer but no inner midget bipolar cell.
View Article and Find Full Text PDFSynaptic terminals of cones (pedicles) are presynaptic to numerous processes that arise from the dendrites of many types of bipolar cell. One kind of process, a central element, reaches deeply into invaginations of the cone pedicle just below an active zone associated with a synaptic ribbon. By reconstruction from serial electron micrographs, we show that L- and M-cone pedicles in macaque fovea are presynaptic to approximately 20 central elements that arise from two types of inner (invaginating) bipolar cell, midget and diffuse.
View Article and Find Full Text PDFThe rod photoreceptor's synaptic terminal (or spherule) uses an elaborate synaptic structure to signal absorption of one or more photons to its postsynaptic targets. This structure includes one or two synaptic ribbons inside the terminal and a pouch-like "invagination" outside the terminal, into which enter a widely variable number of incoming fibers and postsynaptic targets-central elements supplied by rod bipolar cells and lateral elements supplied by horizontal cells. Nonetheless, our three-dimensional reconstructions of this synaptic structure in foveal retina of macaque monkey and peripheral retina of human and cat reveal several features that are highly conserved across species and with eccentricity: 1).
View Article and Find Full Text PDF