Tumor progression and angiogenesis are intimately related. To understand the interrelationship between these two processes, real-time imaging can make a major contribution. In this report, fluorescent protein imaging (FPI) and magnetic resonance imaging (MRI) were utilized to demonstrate the effects of selenium on tumor progression and angiogenesis in an orthotopic model of human colon cancer.
View Article and Find Full Text PDFBackground: The overall objective of this study was to develop a nanoparticle formulation for dual modality imaging of head and neck cancer. Here, we report the synthesis and characterization of polymeric phospholipid-based nanomicelles encapsulating near-infrared (NIR) phosphorescent molecules of Pt(II)-tetraphenyltetranaphthoporphyrin [Pt(TPNP)] and surface functionalized with gadolinium [Pt(TPNP)-Gd] for combined magnetic resonance imaging (MRI) and NIR optical imaging applications.
Methods: Dynamic light scattering, electron microscopy, optical spectroscopy and MR relaxometric measurements were performed to characterize the optical and magnetic properties of nanoparticles in vitro.