Since 2003, highly pathogenic avian influenza (HPAI) viruses of the H5 subtype have been maintained in poultry, periodically spilling back into wild migratory birds and spread to other geographic regions, with re-introduction to domestic birds causing severe impacts for poultry health, production and food sustainability. Successive waves of infection have also resulted in substantial genetic evolution and reassortment, enabling the emergence of multiple clades and subtypes within the H5 2.3.
View Article and Find Full Text PDFAnalyses of HPAI H5 viruses from poultry outbreaks across a wide Eurasian region since July 2020 including the Russian Federation, Republics of Iraq and Kazakhstan, and recent detections in migratory waterfowl in the Netherlands, revealed undetected maintenance of H5N8, likely in galliform poultry since 2017/18 and both H5N5 and H5N1. All viruses belong to A/H5 clade 2.3.
View Article and Find Full Text PDFAvian influenza A viruses (IAVs) in different species of seals display a spectrum of pathogenicity, from sub-clinical infection to mass mortality events. Here we present an investigation of avian IAV infection in a 3- to 4-month-old Grey seal () pup, rescued from St Michael's Mount, Cornwall in 2017. The pup underwent medical treatment but died after two weeks; post-mortem examination and histology indicated sepsis as the cause of death.
View Article and Find Full Text PDFPreviously published NA subtype-specific real-time reverse-transcriptase PCRs (RRT-PCRs) were further validated for the detection of five avian influenza virus (AIV) NA subtypes, namely N5, N6, N7, N8, and N9. Testing of 30 AIV isolates of all nine NA subtypes informed the assay assessments, with the N5 and N9 RRT-PCRs retained as the original published assays while the N7 and N8 assays were modified in the primer-probe sequences to optimize detection of current threats. The preferred N6 RRT-PCR was either the original or the modified variant, depending on the specific H5N6 lineage.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
June 2019
Understanding the epidemiological dynamics of highly pathogenic avian influenza virus (HPAIV) in wild birds is crucial for guiding effective surveillance and control measures. The spread of H5 HPAIV has been well characterized over large geographical and temporal scales. However, information about the detailed dynamics and demographics of individual outbreaks in wild birds is rare and important epidemiological parameters remain unknown.
View Article and Find Full Text PDFWe conducted a cross-sectional study in live bird markets (LBMs) in Dhaka and Chittagong, Bangladesh, to estimate the prevalence of avian influenza A(H5) and A(H9) viruses in different types of poultry and environmental areas by using Bayesian hierarchical logistic regression models. We detected these viruses in nearly all LBMs. Prevalence of A(H5) virus was higher in waterfowl than in chickens, whereas prevalence of A(H9) virus was higher in chickens than in waterfowl and, among chicken types, in industrial broilers than in cross-breeds and indigenous breeds.
View Article and Find Full Text PDFA detailed veterinary and laboratory investigation revealed an unusual case of concurrent avian avulavirus type 1 (AAvV-1, formerly called avian paramyxovirus type 1) and low pathogenicity avian influenza (LPAI) virus infections of chickens during March 2010 in a mixed poultry and livestock farm in Great Britain. Respiratory signs and daily mortality of 5-6 birds in a broiler flock 8-weeks of age prompted submission of two carcasses to an Animal and Plant Health Agency (APHA) regional laboratory. Infectious bronchitis virus infection was suspected initially and virus isolation in SPF embryonated fowls' eggs was attempted at APHA-Weybridge.
View Article and Find Full Text PDFMigratory waterfowl and shorebirds are known to be important reservoirs for influenza A viruses (IAV) and they have been repeatedly implicated as causing avian influenza virus (AIV) outbreaks in domestic poultry flocks worldwide. In recent years, wild birds have been implicated in spreading zoonotic H5 influenza viruses to many countries, which has generated high levels of public health concern. Trinidad and Tobago (T&T) is positioned along the wintering route of migratory birds from the Americas; every year, many species of wild birds stopover on the islands of T&T, potentially carrying AIVs and exposing local populations of wild and domestic birds, including commercial poultry, to infection.
View Article and Find Full Text PDFLow pathogenicity avian influenza (LPAI) viruses of the H7 subtype generally cause mild disease in poultry. However the evolution of a LPAI virus into highly pathogenic avian influenza (HPAI) virus results in the generation of a virus that can cause severe disease and death. The classification of these two pathotypes is based, in part, on disease signs and death in chickens, as assessed in an intravenous pathogenicity test, but the effect of LPAI viruses in turkeys is less well understood.
View Article and Find Full Text PDFWe report the first occurrence of pandemic (H1N1) 2009 virus [A(H1N1)pdm09] infection on two epidemiologically linked turkey breeder premises in the United Kingdom during December 2010 and January 2011. Clinically, the birds showed only mild signs of disease, with the major presenting sign being an acute and marked reduction in egg production, leading to the prompt reporting of suspected avian notifiable disease for official investigation. Presence of A(H1N1)pdm09 infection in the United Kingdom turkey breeder flocks was confirmed by detailed laboratory investigations including virus isolation in embryonated specific pathogen-free fowls' eggs, two validated real-time reverse transcription-PCR tests, and nucleotide sequencing of the hemagglutinin and neuraminidase genes.
View Article and Find Full Text PDFOutbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999-2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains.
View Article and Find Full Text PDFThe influence of different glycosylation patterns of the haemagglutinin glycoprotein of H7N1 avian influenza viruses on virus replication in vivo was examined. Experimental infection of chickens and turkeys was carried out with H7N1 avian influenza viruses with alternative sites of glycosylation in the haemagglutinin and infected birds were sampled daily by swabbing the buccal and cloacal cavities. cDNAs of the HA1 coding region of the HA gene were prepared from the swabs and cloned into plasmids.
View Article and Find Full Text PDFSurveillance for influenza virus in pigs in the United Kingdom during spring 2010 detected a novel reassortant influenza virus. This virus had genes encoding internal proteins from pandemic (H1N1) 2009 virus and hemagglutinin and neuraminidase genes from swine influenza virus (H1N2). Our results demonstrate processes contributing to influenza virus heterogeneity.
View Article and Find Full Text PDFBackground: There is a requirement to detect and differentiate pandemic (H1N1) 2009 (H1N1v) and established swine influenza A viruses (SIVs) by real time reverse transcription (RRT) PCR methods.
Objectives: First, modify an existing matrix (M) gene RRT PCR for sensitive generic detection of H1N1v and other European SIVs. Second, design an H1 RRT PCR to specifically detect H1N1v infections.
The emergence and spread of H5N1 avian influenza viruses from Asia through to Europe and Africa pose a significant animal disease problem and have raised concerns that the virus may pose a pandemic threat to humans. The epizootological factors that have influenced the wide distribution of the virus are complex, and the variety of viruses currently circulating reflects these factors. Sequence analysis of the virus genes sheds light on the H5N1 virus evolution during its emergence and spread, but the degree of virus variation at the level of an individual infected bird has been described in only a few studies.
View Article and Find Full Text PDFSporadic cases of an acute fall in milk production, "milk drop", were investigated in a Holstein Friesian dairy herd in Devon. The investigation was a case control study with two controls per case. Paired blood samples demonstrated that rising antibody titres to human influenza A/England/333/80 (H1N1) and human influenza A/Eng/427/88 (H3N2) were associated with an acute fall in milk production.
View Article and Find Full Text PDFInfluenza A viruses occur worldwide in wild birds and are occasionally associated with outbreaks in commercial chickens and turkeys. However, avian influenza viruses have not been isolated from wild birds or poultry in South America. A recent outbreak in chickens of H7N3 low pathogenic avian influenza (LPAI) occurred in Chile.
View Article and Find Full Text PDFThis study examines the genetic relationships between the recently emerged H1N2 swine influenza virus and viruses of H1N1 and H3N2 subtypes, and the extent of protection against H1N2 challenge in pigs immune after infection or vaccination with the other subtypes. There was low amino acid homology (70.4-71.
View Article and Find Full Text PDF