Publications by authors named "Steve D Sharples"

Throughout our engineered environment, many materials exhibit a crystalline lattice structure. The orientation of such lattices is crucial in determining functional properties of these structures, including elasticity and magnetism. Hence, tools for determining orientation are highly sought after.

View Article and Find Full Text PDF

Titanium metal matrix composites (TiMMCs) offer advantages over traditional materials for aerospace applications due to the increased mechanical strength of the materials. But the non-destructive inspection of these materials, especially with ultrasound, is in an infancy stage. If the manufacturing process of TiMMC is not correctly controlled, then disbonds and voids between the fibers can result.

View Article and Find Full Text PDF

A previously described laser ultrasonic technique known as spatially resolved acoustic spectroscopy (SRAS) can be used to image surface microstructure, using the local surface acoustic wave (SAW) velocity as a contrast mechanism. It is shown here that measuring the SAW velocity in multiple directions can be used to determine the crystallographic orientation of grains. The orientations are determined by fitting experimentally measured velocities to theoretical velocities.

View Article and Find Full Text PDF
Article Synopsis
  • The paper presents a new optically powered MEMS transducer capable of generating ultrasonic bulk waves efficiently using laser excitation.
  • It features a two-mask-level design, with a microdisk and microstem, where the disk's resonant motion creates narrowband ultrasound through thermomechanical interactions.
  • Experimental results confirm that this transducer produces ultrasound with significantly higher amplitude and better signal-to-noise ratio than traditional methods, while being cost-effective and compact.
View Article and Find Full Text PDF

This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer.

View Article and Find Full Text PDF

This paper presents the analysis, design, and experimental study of a microcantilever optically-activated ultrasonic detection transducer. An analytical model was derived using 1-D cantilever structural dynamics, leading to the optimization of the transducer design. Finite element modeling enabled dynamic simulation to be performed, with results in good agreement with the analytical model.

View Article and Find Full Text PDF

We have developed a noncontact and nondestructive technique that uses laser-generated and detected surface acoustic waves to rapidly determine the local acoustic velocity, in order to map the microstructure of multi-grained materials. Optical fringes excite surface waves at a fixed frequency, and the generation efficiency is determined by how closely the fringe spacing matches the acoustic wavelength in the excitation region. Images of titanium alloys are presented, acquired using the technique.

View Article and Find Full Text PDF

We have designed and had manufactured a custom surface acoustic wavefront sensor, using a standard CMOS process. Ultrasound propagating along the surface of an object perturbs the reflection of incident laser light, which has been focused onto the object using a cylindrical lens. These high-frequency angular perturbations of reflected light relate to the amplitude and phase of the ultrasound along a line on the surface of the object, and thus correspond to the acoustic wavefront.

View Article and Find Full Text PDF

Aberrating materials can degrade acoustic measurements by distorting the acoustic wavefront and causing acoustic speckle (as opposed to speckle noise which is a manifestation of coherent backscatter). The amplitude and phase fluctuations associated with acoustic speckle can introduce considerable measurement uncertainty which is difficult to deal with. This paper demonstrates a new technique which optimises the spatial distribution of the generation of the ultrasound to compensate for the aberration.

View Article and Find Full Text PDF

We have constructed a fast laser-based surface acoustic wave (SAW) microscope, which may be thought of as a non-perturbing scanning acoustic microscope. The instrument is capable of rapid high resolution vector contrast imaging at several discrete frequencies, without any damage to the sample. Tailoring the generating optical distribution using computer-generated holograms allows us to both focus the acoustic waves (increasing their amplitude) and to spread the optical power over the sample surface (preventing damage).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionmbppscggji7drf098u4k67h8aa8tktqu): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once