Background: Therapies for metastatic castration-resistant prostate cancer (mCRPC) include targeting the androgen receptor (AR) with androgen receptor inhibitors (ARIs) and prostate-specific membrane antigen (PSMA). Having the ability to detect AR, AR splice variant 7 (AR-V7), or PSMA in circulating tumor cells (CTCs) or circulating exosomal cell-free RNA (cfRNA) could be helpful to guide selection of the appropriate therapy for each individual patient. The Vortex Biosciences VTX-1 system is a label-free CTC isolation system that enables the detection of the expression of multiple genes in both CTCs and exosomal cfRNA from the same blood sample in patients with mCRPC.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer-related mortality worldwide. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapies, based on the evaluation of mutations, have shown dramatic clinical benefits. mutation assays are mainly performed on tumor biopsies, which carry risks, are not always successful and give results relevant to the timepoint of the assay.
View Article and Find Full Text PDFClinicians continue to rely on invasive tissue biopsies as a mean to assess a patient's disease and prescribe appropriate treatment regimens. Biopsies not only are risky and expensive but also limit the understanding of disease. Circulating tumor cells (CTCs) can be isolated from a simple blood draw and offer a promising potential to both diagnose and monitor cancer progression.
View Article and Find Full Text PDFTumor tissue biopsies are invasive, costly, and collect a limited cell population not completely reflective of patient cancer cell diversity. Circulating tumor cells (CTCs) can be isolated from a simple blood draw and may be representative of the diverse biology from multiple tumor sites. The VTX-1 Liquid Biopsy System was designed to automate the isolation of clinically relevant CTC populations, making the CTCs available for easy analysis.
View Article and Find Full Text PDFAerobic capacity and body composition were measured at 3 time points over a 1-year period in 26 Division 1A women soccer players from Texas A&M University, in order to determine whether there were seasonal changes in these parameters. Subjects were tested in December, immediately following a 4-month competitive season; in April, following 15 weeks of strength and conditioning; and immediately prior to the start of the regular season in August, following a 12-week summer strength and conditioning program. A periodized strength and conditioning program design was incorporated in order to optimize anaerobic and oxidative capacity immediately prior to the regular competitive season.
View Article and Find Full Text PDF