Publications by authors named "Steve Coats"

HLA-B27 and HLA-B57 are associated with autoimmunity and long-term viral control and protection against HIV and HCV infection; however, their role in cancer immunity remains unknown. HLA class I molecules interact with innate checkpoint receptors of the LILRA, LILRB and KIR families present in diverse sets of immune cells. Here, we demonstrate that an open format (peptide free conformation) and expression- and stability-optimized HLA-B57-B2m-IgG4_Fc fusion protein (IOS-1002) binds to human leukocyte immunoglobulin-like receptor B1 and B2 (LILRB1 and LILRB2) and to killer immunoglobulin-like receptor 3DL1 (KIR3DL1).

View Article and Find Full Text PDF

A series of thirty-one new compounds were synthesized and evaluated for their anti-HIV-1 and cytotoxicity activity. Of these, twelve were found to be inhibitors of HIV replications in primary human lymphocytes with median effective concentration (EC) values < 20 µM. However, most of the compounds demonstrated cytotoxicity in different cells.

View Article and Find Full Text PDF

Prostate-specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase that is highly expressed in nearly all prostate cancers with the highest expression in metastatic castration-resistant prostate cancer (mCRPC). The prevalence of increased surface expression and constitutive internalization of PSMA make it an attractive target for an antibody-drug conjugate (ADC) approach to treating patients with mCRPC. MEDI3726 (previously known as ADCT-401) is an ADC consisting of an engineered version of the anti-PSMA antibody J591 site specifically conjugated to the pyrrolobenzodiazepine (PBD) dimer tesirine.

View Article and Find Full Text PDF

Individual or combinations of somatic mutations found in genes from colorectal cancers can redirect the effects of chemotherapy and targeted agents on cancer cell survival and, consequently, on clinical outcome. Novel therapeutics with mechanisms of action that are independent of mutational status would therefore fulfill a current unmet clinical need. Here the CEA and CD3 bispecific single-chain antibody MEDI-565 (also known as MT111 and AMG 211) was evaluated for its ability to activate T cells both in vitro and in vivo and to kill human tumor cell lines harboring various somatic mutations commonly found in colorectal cancers.

View Article and Find Full Text PDF

EphB4 is a member of the Eph receptor tyrosine kinase family shown to act in neuronal guidance and mediate venal/arterial separation. In contrast to these more established roles, EphB4's function in cancer is much less clear. Here we illustrate both tumor promoting as well as suppressing roles of EphB4, by showing that its activation resulted in inhibition of the Ras/ERK pathway in endothelial cells but activation of the same pathway in MCF-7 breast cancer cells.

View Article and Find Full Text PDF

Angiopoietin 2 (Ang2) is an important regulator of angiogenesis, blood vessel maturation and integrity of the vascular endothelium. The correlation between the dynamic expression of Ang2 in tumors with regions of high angiogenic activity and a poor prognosis in many tumor types makes Ang2 an ideal drug target. We have generated MEDI3617, a human anti-Ang2 monoclonal antibody that neutralizes Ang2 by preventing its binding to the Tie2 receptor in vitro, and inhibits angiogenesis and tumor growth in vivo.

View Article and Find Full Text PDF

The discovery of aurora kinases as essential regulators of cell division has led to intense interest in identifying small molecule aurora kinase inhibitors for the potential treatment of cancer. A high-throughput screening effort identified pyridinyl-pyrimidine 6a as a moderately potent dual inhibitor of aurora kinases -A and -B. Optimization of this hit resulted in an anthranilamide lead (6j) that possessed improved enzyme and cellular activity and exhibited a high level of kinase selectivity.

View Article and Find Full Text PDF

IPI-504 is a novel, highly soluble small-molecule inhibitor of heat shock protein 90 (Hsp90), a protein chaperone essential for regulating homeostasis of oncoproteins and cell signaling proteins. Human epidermal growth factor receptor 2 (HER2; ErbB2) oncoprotein, expressed in a subset of metastatic breast cancers, is a Hsp90 client protein. In this study, we investigated the antitumor activity and the mechanism of action of IPI-504 in HER2(+), trastuzumab-sensitive and trastuzumab-refractory cell lines in vitro and in vivo.

View Article and Find Full Text PDF

In recent decades, mAbs have been used increasingly as targeted therapeutics for various diseases. However, the selective nature of antibodies can often lead to mAbs that do not recognize the target antigen in a preclinical model species used in studies of in vivo efficacy and safety. This feature review article focuses on the use of alternative animal models and surrogate antibodies for studies of efficacy for cases in which the primary therapeutic antibody does not recognize the antigen in a relevant species.

View Article and Find Full Text PDF

The EphA2 receptor tyrosine kinase is frequently overexpressed and functionally altered in malignant cells and thus provides opportunities for selective targeting of tumor cells. We describe here the development of a novel, bispecific single-chain antibody (bscAb) referred to as bscEphA2xCD3. This molecule simultaneously targets EphA2 on tumor cells and the T-cell receptor/CD3 complex on T cells and possesses structural and functional characteristics of the recently developed BiTE technology.

View Article and Find Full Text PDF

The humanized monoclonal antibody Abegrin, currently in phase II trials for treatment of solid tumors, specifically recognizes the integrin alphavbeta3. Due to its high expression on mature osteoclasts, angiogenic endothelial cells, and tumor cells, integrin alphavbeta3 functions in several pathologic processes important to tumor growth and metastasis. Targeting of this integrin with Abegrin results in antitumor, antiangiogenic, and antiosteolytic activities.

View Article and Find Full Text PDF

In eukaryotic cells, cyclin-dependent kinase (CDK) complexes regulate the temporal progression of cells through the cell cycle. Deregulation in the cell cycle is an essential component in the evolution of cancer. Here, we validate CDK1 and CDK2 as potential therapeutic targets using novel selective small-molecule inhibitors of cyclin B1/CDK1 and cyclin E2/CDK2 enzyme complexes (CDKi).

View Article and Find Full Text PDF

Angiopoietin-2 (Ang2) exhibits broad expression in the remodeling vasculature of human tumors but very limited expression in normal tissues, making it an attractive candidate target for antiangiogenic cancer therapy. To investigate the functional consequences of blocking Ang2 activity, we generated antibodies and peptide-Fc fusion proteins that potently and selectively neutralize the interaction between Ang2 and its receptor, Tie2. Systemic treatment of tumor-bearing mice with these Ang2-blocking agents resulted in tumor stasis, followed by elimination of all measurable tumor in a subset of animals.

View Article and Find Full Text PDF

The increased expression of G(1) cyclins has been associated with the many types of human tumors. In primary solid tumors however, the expression and activity of cyclin E2, the newest member of the G(1) cyclin family, is largely unknown. In this study we have analysed the expression of the E-type cyclins in primary solid tumors from breast, lung, uterus, ovary, colon, and rectal tissues.

View Article and Find Full Text PDF
Cyclin E2, the cycle continues.

Int J Biochem Cell Biol

April 2002

The eukaryotic cell cycle is regulated by a family of serine/threonine protein kinases known as cyclin-dependent kinases (CDKs). The activation of a CDK is dependent on its association with a cyclin regulatory subunit. The formation of distinct cyclin-CDK complexes controls the progression through the first gap phase (G(1)) and initiation of DNA synthesis (S phase).

View Article and Find Full Text PDF