Current understanding of soil carbon dynamics suggests that plant litter quality and soil mineralogy control the formation of mineral-associated soil organic carbon (SOC). Due to more efficient microbial anabolism, high-quality litter may produce more microbial residues for stabilisation on mineral surfaces. To test these fundamental concepts, we manipulate soil mineralogy using pristine minerals, characterise microbial communities and use stable isotopes to measure decomposition of low- and high-quality litter and mineral stabilisation of litter-C.
View Article and Find Full Text PDFThe concept of planetary health acknowledges the links between ecosystems, biodiversity and human health and well-being. Soil, the critical component of the interconnected ecosystem, is the most biodiverse habitat on Earth, and soil microbiomes play a major role in human health and well-being through ecosystem services such as nutrient cycling, pollutant remediation and synthesis of bioactive compounds such as antimicrobials. Soil is also a natural source of antimicrobial resistance, which is often termed intrinsic resistance.
View Article and Find Full Text PDFIn this research, bacterial cell attachments to hematite, goethite and aluminium hydroxide were investigated. The aim was to study the effects of these minerals' hydrophobicity and pH-dependent surface charge on the extent of biofilm formation using six genetically diverse bacterial strains: Rhodococcus spp. (RC92 & RC291), Pseudomonas spp.
View Article and Find Full Text PDFGlobally, rapid urbanization, along with economic development, is dramatically changing the balance of biogeochemical cycles, impacting upon ecosystem services and impinging on United Nation global sustainability goals (inter alia: sustainable cities and communities; responsible consumption and production; good health and well-being; clean water and sanitation, and; to protect and conserve life on land and below water). A key feature of the urban ecosystems is that nutrient stocks, carbon (C), nitrogen (N) and phosphorus (P), are being enriched. Furthermore, urban ecosystems are highly engineered, biogeochemical cycling of nutrients within urban ecosystems is spatially segregated, and nutrients exported (e.
View Article and Find Full Text PDFOn million-year timescales, carbonate rock weathering exerts no net effect on atmospheric CO2 concentration. However, on timescales of decades-to-centuries, it can contribute to sequestration of anthropogenic CO2 and increase land-ocean alkalinity flux, counteracting ocean acidification. Historical evidence indicates this flux is sensitive to land use change, and recent experimental evidence suggests that trees and their associated soil microbial communities are major drivers of continental mineral weathering.
View Article and Find Full Text PDFField studies indicate an intensification of mineral weathering with advancement from arbuscular mycorrhizal (AM) to later-evolving ectomycorrhizal (EM) fungal partners of gymnosperm and angiosperm trees. We test the hypothesis that this intensification is driven by increasing photosynthate carbon allocation to mycorrhizal mycelial networks using 14CO2-tracer experiments with representative tree–fungus mycorrhizal partnerships. Trees were grown in either a simulated past CO2 atmosphere (1500 ppm)—under which EM fungi evolved—or near-current CO2 (450 ppm).
View Article and Find Full Text PDFForested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups.
View Article and Find Full Text PDFGlobal weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO(2)) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate.
View Article and Find Full Text PDFSingle cell Raman spectroscopy (SCRS) is a non-invasive and label-free technology, allowing in vivo and multiple parameter analysis of individual living cells. A single cell Raman spectrum usually contains more than 1000 Raman bands which provide rich and intrinsic information of the cell (e.g.
View Article and Find Full Text PDF