Publications by authors named "Steve A N Goldstein"

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.

View Article and Find Full Text PDF

Dysfunction of the human voltage-gated K channel Kv1.1 has been associated with epilepsy, multiple sclerosis, episodic ataxia, myokymia, and cardiorespiratory dysregulation. We report here that AETX-K, a sea anemone type I (SAK1) peptide toxin we isolated from a phage display library, blocks Kv1.

View Article and Find Full Text PDF

There are no targeted medical therapies for Acute Lung Injury (ALI) or its most severe form acute respiratory distress syndrome (ARDS). Infections are the most common cause of ALI/ARDS and these disorders present clinically with alveolar inflammation and barrier dysfunction due to the influx of neutrophils and inflammatory mediator secretion. We designed the C6 peptide to inhibit voltage-gated proton channels (Hv1) and demonstrated that it suppressed the release of reactive oxygen species (ROS) and proteases from neutrophils .

View Article and Find Full Text PDF

The human voltage-gated proton channel (hHv1) is important for control of intracellular pH. We designed C6, a specific peptide inhibitor of hHv1, to evaluate the roles of the channel in sperm capacitation and in the inflammatory immune response of neutrophils [R. Zhao et al.

View Article and Find Full Text PDF

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.

View Article and Find Full Text PDF

Human voltage-gated proton channels (hHv1) extrude protons from cells to compensate for charge and osmotic imbalances due metabolism, normalizing intracellular pH and regulating protein function. Human albumin (Alb), present at various levels throughout the body, regulates oncotic pressure and transports ligands. Here, we report Alb is required to activate hHv1 in sperm and neutrophils.

View Article and Find Full Text PDF

In this method paper, we describe protocols for using membrane-tethered peptide toxins (T-toxins) to study the structure/function and biophysics of toxin-channel interactions with two-electrode voltage clamp (TEVC). Here, we show how T-toxins can be used to determine toxin equilibrium affinity, to quantify toxin surface level by enzyme-linked immunosorbent assay (ELISA) and/or single-molecule total internal reflection fluorescence (smTIRF) microscopy, to assess toxin association and dissociations rate, to identify toxin residues critical to binding via scanning mutagenesis, and to study of toxin blocking mechanism. The sea anemone type I (SAK1) toxin HmK and a potassium channel are used to demonstrate the strategies.

View Article and Find Full Text PDF

TOKs are outwardly rectifying K channels in fungi with two pore-loops and eight transmembrane spans. Here, we describe the TOKs from four pathogens that cause the majority of life-threatening fungal infections in humans. These TOKs pass large currents only in the outward direction like the canonical isolate from Saccharomyces cerevisiae (ScTOK), and distinct from other K channels.

View Article and Find Full Text PDF

We show here that membrane-tethered toxins facilitate the biophysical study of the roles of toxin residues in K channel blockade to reveal two blocking mechanisms in the K channel pore. The structure of the sea anemone type I (SAK1) toxin HmK is determined by NMR. T-HmK residues are scanned by point mutation to map the toxin surface, and seven residues are identified to be critical to occlusion of the KcsA channel pore.

View Article and Find Full Text PDF

Acute cardiac hypoxia produces life-threatening elevations in late sodium current (I) in the human heart. Here, we show the underlying mechanism: hypoxia induces rapid SUMOylation of Na1.5 channels so they reopen when normally inactive, late in the action potential.

View Article and Find Full Text PDF

Using a de novo peptide inhibitor, Corza6 (C6), we demonstrate that the human voltage-gated proton channel (hHv1) is the main pathway for H efflux that allows capacitation in sperm and permits sustained reactive oxygen species (ROS) production in white blood cells (WBCs). C6 was identified by a phage-display strategy whereby ∼1 million novel peptides were fabricated on an inhibitor cysteine knot (ICK) scaffold and sorting on purified hHv1 protein. Two C6 peptides bind to each dimeric channel, one on the S3-S4 loop of each voltage sensor domain (VSD).

View Article and Find Full Text PDF

In order to multiply and cause disease a virus must transport its genome from outside the cell into the cytosol, most commonly achieved through the endocytic network. Endosomes transport virus particles to specific cellular destinations and viruses exploit the changing environment of maturing endocytic vesicles as triggers to mediate genome release. Previously we demonstrated that several bunyaviruses, which comprise the largest family of negative sense RNA viruses, require the activity of cellular potassium (K+) channels to cause productive infection.

View Article and Find Full Text PDF

channels open in response to depolarization of the membrane voltage during the cardiac action potential, passing potassium ions outward to repolarize ventricular myocytes and end each beat. Here, we show that the voltage required to activate channels depends on their covalent modification by small ubiquitin-like modifier (SUMO) proteins. channels are comprised of four KCNQ1 pore-forming subunits, two KCNE1 accessory subunits, and up to four SUMOs, one on Lys of each KCNQ1 subunit.

View Article and Find Full Text PDF

Peptide neurotoxins are powerful tools for research, diagnosis, and treatment of disease. Limiting broader use, most receptors lack an identified toxin that binds with high affinity and specificity. This paper describes isolation of toxins for one such orphan target, KcsA, a potassium channel that has been fundamental to delineating the structural basis for ion channel function.

View Article and Find Full Text PDF

Myocardial repolarization capacity varies with sex, age, and pathology; the molecular basis for this variation is incompletely understood. Here, we show that the transcript for KCNE4, a voltage-gated potassium (Kv) channel β subunit associated with human atrial fibrillation, was 8-fold more highly expressed in the male left ventricle compared with females in young adult C57BL/6 mice (P < 0.05).

View Article and Find Full Text PDF

KCNE1 (E1) β-subunits assemble with KCNQ1 (Q1) voltage-gated K(+) channel α-subunits to form IKslow (IKs) channels in the heart and ear. The number of E1 subunits in IKs channels has been an issue of ongoing debate. Here, we use single-molecule spectroscopy to demonstrate that surface IKs channels with human subunits contain two E1 and four Q1 subunits.

View Article and Find Full Text PDF

In skeletal muscle, slow inactivation (SI) of Na(V)1.4 voltage-gated sodium channels prevents spontaneous depolarization and fatigue. Inherited mutations in Na(V)1.

View Article and Find Full Text PDF

The number of voltage-gated sodium (Na(V)) channels available to generate action potentials in muscles and nerves is adjusted over seconds to minutes by prior electrical activity, a process called slow inactivation (SI). The basis for SI is uncertain. Na(V) channels have four domains (DI-DIV), each with a voltage sensor that moves in response to depolarizing stimulation over milliseconds to activate the channels.

View Article and Find Full Text PDF

Human I(Ks) channels activate slowly with the onset of cardiac action potentials to repolarize the myocardium. I(Ks) channels are composed of KCNQ1 (Q1) pore-forming subunits that carry S4 voltage-sensor segments and KCNE1 (E1) accessory subunits. Together, Q1 and E1 subunits recapitulate the conductive and kinetic properties of I(Ks).

View Article and Find Full Text PDF

The standing outward K(+) current (IKso) governs the response of cerebellar granule neurons to natural and medicinal stimuli including volatile anesthetics. We showed that SUMOylation silenced half of IKso at the surface of cerebellar granule neurons because the underlying channels were heterodimeric assemblies of K2P1, a subunit subject to SUMOylation, and the TASK (two-P domain, acid-sensitive K(+)) channel subunits K2P3 or K2P9. The heterodimeric channels comprised the acid-sensitive portion of IKso and mediated its response to halothane.

View Article and Find Full Text PDF

New evidence reveals that the common electrolyte disorder hypokalemia can induce K2P1 channels that are normally selective for K+ to break the rules and conduct Na+. This defiant behavior leads to paradoxical depolarization of many cells in the heart, increasing the risk for lethal arrhythmia. The new research resolves a mystery uncovered 50 years ago and bestows an array of new riddles.

View Article and Find Full Text PDF

Voltage-gated Kv2.1 potassium channels are important in the brain for determining activity-dependent excitability. Small ubiquitin-like modifier proteins (SUMOs) regulate function through reversible, enzyme-mediated conjugation to target lysine(s).

View Article and Find Full Text PDF

MiRP3, the single-span membrane protein encoded by KCNE4, is localized by immunofluorescence microscopy to the transverse tubules of murine cardiac myocytes. MiRP3 is found to co-localize with Kv4.2 subunits that contribute to cardiac transient outward potassium currents (I(to)).

View Article and Find Full Text PDF

Small ubiquitin modifier 1 (SUMO1) is shown to regulate K2P1 background channels in the plasma membrane (PM) of live mammalian cells. Confocal microscopy reveals native SUMO1, SAE1, and Ubc9 (the enzymes that activate and conjugate SUMO1) at PM where SUMO1 and expressed human K2P1 are demonstrated to colocalize. Silent K2P1 channels in excised PM patches are activated by SUMO isopeptidase (SENP1) and resilenced by SUMO1.

View Article and Find Full Text PDF

Venomous animals immobilize prey using protein toxins that act on ion channels and other targets of biological importance. Broad use of toxins for biomedical research, diagnosis, and therapy has been limited by inadequate target discrimination, for example, among ion channel subtypes. Here, a synthetic toxin is produced by a new strategy to be specific for human Kv1.

View Article and Find Full Text PDF