Publications by authors named "Stevan Djuric"

The complexity of new therapeutics continues to increase and the timeline for the discovery of these therapeutics continues to shrink. This creates demand for new analytical techniques to facilitate quicker discovery and development of novel drugs. Mass spectrometry is one of the most prolific analytical techniques that has been applied across the entire drug discovery pipeline.

View Article and Find Full Text PDF

A novel rearrangement sequence of 3-hydroxyazetidines via a Ritter initiated cascade provides highly substituted 2-oxazolines in high yields. The reaction conditions and substrate scope of the transformation have been studied demonstrating the generality of the process. The derived products can also be functionalized in order to undergo further intramolecular cyclization leading to a new class of macrocycle.

View Article and Find Full Text PDF

Technologies that enable rapid screening of diverse reaction conditions are of critical importance to methodology development and reaction optimization, especially when molecules of high complexity and scarcity are involved. The lack of a general solid dispensing method for chemical reagents on micro- and nanomole scale prevents the full utilization of reaction screening technologies. We herein report the development of a technology in which glass beads coated with solid chemical reagents (ChemBeads) enable the delivery of nanomole quantities of solid chemical reagents efficiently.

View Article and Find Full Text PDF

Secondary piperidines are ideal pharmaceutical building blocks owing to the prevalence of piperidines in commercial drugs. Here, we report an electrochemical method for cyanation of the heterocycle adjacent to nitrogen without requiring protection or substitution of the N-H bond. The reaction utilizes ABNO (9-azabicyclononane N-oxyl) as a catalytic mediator.

View Article and Find Full Text PDF

The development of glycine transporter 1 (GlyT1) inhibitors may offer putative treatments for schizophrenia and other disorders associated with hypofunction of the glutaminergic N-methyl-d-aspartate (NMDA) receptor. Herein, we describe the synthesis and biological evaluation of a series of 3,4-disubstituted pyrrolidine sulfonamides as competitive GlyT1 inhibitors that arose from de novo scaffold design. Relationship of chemical structure to drug-drug interaction (DDI) and bioactivation was mechanistically investigated.

View Article and Find Full Text PDF

Stevan Djuric speaks to Benjamin Walden, Commissioning Editor. Stevan Djuric is head of the global Medicinal Chemistry Leadership Team at AbbVie and is also Vice President of the Discovery Chemistry and Technology organization within their Discovery organization and chemistry outsourcing activities. He spoke at the Global-Medicinal-Chemistry and GPCR summit on the imperative to develop chemistry related technology that can reduce cycle time, cost of goods and improve probability of success.

View Article and Find Full Text PDF

A mild and selective C(sp )-H aerobic oxidation enabled by decatungstate photocatalysis has been developed. The reaction can be significantly improved in a microflow reactor enabling the safe use of oxygen and enhanced irradiation of the reaction mixture. Our method allows for the oxidation of both activated and unactivated C-H bonds (30 examples).

View Article and Find Full Text PDF

It is advocated that kinetic and thermodynamic profiling of bioactive compounds should be incorporated and utilized as complementary tools for hit and lead optimizations in drug discovery. To assess their applications in the EED hit-to-lead optimization process, large amount of thermodynamic and kinetic data were collected and analyzed via isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR), respectively. Slower dissociation rates (k) of the lead compounds were observed as the program progressed.

View Article and Find Full Text PDF

A silica-supported precatalyst, Pd-PEPPSI-IPent-SiO , has been prepared and evaluated for its proficiency in the Negishi cross-coupling of hindered and electronically deactivated coupling partners. The precatalyst Pd-PEPPSI-IPent loaded onto packed bed columns shows high catalytic activity for the room-temperature coupling of deactivated/hindered biaryl partners. Also for the first time, the flowed Csp -Csp coupling of secondary alkylzinc reagents to (hetero)aromatics has been achieved with high selectivity with Pd-PEPPSI-IPent-SiO .

View Article and Find Full Text PDF

The productivity of medicinal chemistry programs can be significantly increased through the introduction of automation, leading to shortened discovery cycle times. Herein, we describe a platform that consolidates synthesis, purification, quantitation, dissolution, and testing of small molecule libraries. The system was validated through the synthesis and testing of two libraries of binders of polycomb protein EED, and excellent correlation of obtained data with results generated through conventional approaches was observed.

View Article and Find Full Text PDF

Fused pyrimidinone and quinolone derivatives that are of potential interest to pharmaceutical research were synthesized within minutes in up to 96% yield in an automated Phoenix high-temperature and high-pressure continuous flow reactor. Heterocyclic scaffolds that are either hard to synthesize or require multisteps are readily accessible using a common set of reaction conditions. The use of low-boiling solvents along with the high conversions of these reactions allowed for facile workup and isolation.

View Article and Find Full Text PDF

This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of "dangerous" reagents. Also featured are advances in the "computer-assisted drug design" area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities.

View Article and Find Full Text PDF

The efficient synthesis of cyclopropyl boronic esters in library format using a diazomethane flow reactor has been achieved. A pivotal component of the system is a fully automated tube-in-tube reactor allowing for safe handling of hazardous diazomethane on repeated small scale and for the generation of larger quantities of product. The setup enables the repeated execution of Pd-catalyzed cyclopropanation reactions without compromising its operation over time.

View Article and Find Full Text PDF

A simplified Boc deprotection using a high-temperature flow reactor is described. The system afforded the qualitative yield of a wide variety of deprotected substrates within minutes using acetonitrile as the solvent and without the use of acidic conditions or additional workups. Highly efficient, multistep reaction sequences in flow are also demonstrated wherein no extraction or isolation was required between steps.

View Article and Find Full Text PDF

A flexible and integrated flow-chemistry-synthesis-purification compound-generation and sample-management platform has been developed to accelerate the production of small-molecule organic-compound drug candidates in pharmaceutical research. Central to the integrated system is a Mitsubishi robot, which hands off samples throughout the process to the next station, including synthesis and purification, sample dispensing for purity and quantification analysis, dry-down, and aliquot generation.

View Article and Find Full Text PDF

A high throughput screening (HTS) hit, 1 (Plk1 K(i)=2.2 μM) was optimized and evaluated for the enzymatic inhibition of Plk-1 kinase. Molecular modeling suggested the importance of adding a hydrophobic aromatic amine side chain in order to improve the potency by a classic kinase H-donor-acceptor binding mode.

View Article and Find Full Text PDF

The design and synthesis of indazolinone containing kinase inhibitors are reported. Regioisomers that showed profound potency variation in previously-reported isoindolinone and aminoindazole systems were surprisingly found to have similar potencies in the case of the indazolinone chemical series. An interpretation using differential hinge hydrogen bonding and tautomeric equilibrium of indazolinone ring system is supported by quantum mechanics calculations.

View Article and Find Full Text PDF