Aluminum hydrolysis chemistry is an important part of modern society because of the dominance of Al(III) as a highly effective antiperspirant active. However, the century-old chemistry centered on aluminum chloride (ACL) is not comprehensive enough to address all of the events associated with current commercial antiperspirants and their mechanism of action. The present study aims to address the knowledge gap among extensively studied benchmark ACL, its modified version aluminum chlorohydrate (ACH), and a more complex but less explored group of aluminum zirconium chlorohydrate glycine complexes (ZAG salts) toward understanding the mechanism of action under consumer-relevant conditions.
View Article and Find Full Text PDFMetal-based antiperspirants have been in use for centuries; however, there is an increasing consumer demand for a metal-free alternative that works effectively. Here, we develop an artificial sweat duct rig and demonstrate an alternative, metal-free approach to antiperspiration. Instead of clogging sweat ducts with metal salts, we use a hygroscopic material to induce the evaporation of sweat as it approaches the outlet (i.
View Article and Find Full Text PDF