Gene model for the ortholog of Insulin-like peptide 5 ( ) in the May 2011 (Agencourt dana_caf1/DanaCAF1) Genome Assembly (GenBank Accession: GCA_000005115.1 ) of . This ortholog was characterized as part of a developing dataset to study the evolution of the Insulin/insulin-like growth factor signaling pathway (IIS) across the genus using the Genomics Education Partnership gene annotation protocol for Course-based Undergraduate Research Experiences.
View Article and Find Full Text PDFJ Microbiol Biol Educ
August 2022
The Genomics Education Partnership (GEP) engages students in a course-based undergraduate research experience (CURE). To better understand the student attributes that support success in this CURE, we asked students about their attitudes using previously published scales that measure epistemic beliefs about work and science, interest in science, and grit. We found, in general, that the attitudes students bring with them into the classroom contribute to two outcome measures, namely, learning as assessed by a pre- and postquiz and perceived self-reported benefits.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs), which regulate a vast number of eukaryotic processes, are desensitized by various mechanisms but, most importantly, by the GPCR kinases (GRKs). Ever since GRKs were first identified, investigators have sought to determine which structural features of GRKs are used to select for the agonist-bound states of GPCRs and how this binding event in turn enhances GRK catalytic activity. Despite a wealth of molecular information from high-resolution crystal structures of GRKs, the mechanisms driving activation have remained elusive, in part because the GRK N-terminus and active site tether region, previously proposed to serve as a receptor docking site and to be key to kinase domain closure, are often disordered or adopt inconsistent conformations.
View Article and Find Full Text PDFA hallmark of the research experience is encountering difficulty and working through those challenges to achieve success. This ability is essential to being a successful scientist, but replicating such challenges in a teaching setting can be difficult. The Genomics Education Partnership (GEP) is a consortium of faculty who engage their students in a genomics Course-Based Undergraduate Research Experience (CURE).
View Article and Find Full Text PDFG protein-coupled receptor kinases (GRKs) phosphorylate agonist-occupied receptors initiating the processes of desensitization and β-arrestin-dependent signaling. Interaction of GRKs with activated receptors serves to stimulate their kinase activity. The extreme N-terminal helix (αN), the kinase small lobe, and the active site tether (AST) of the AGC kinase domain have previously been implicated in mediating the allosteric activation.
View Article and Find Full Text PDFThe heterotrimeric G protein Gαq is a key regulator of blood pressure, and excess Gαq signaling leads to hypertension. A specific inhibitor of Gαq is the GTPase activating protein (GAP) known as regulator of G protein signaling 2 (RGS2). The molecular basis for how Gαq/11 subunits serve as substrates for RGS proteins and how RGS2 mandates its selectivity for Gαq is poorly understood.
View Article and Find Full Text PDFG-protein-coupled receptor (GPCR) kinases (GRKs) were first identified based on their ability to specifically phosphorylate activated GPCRs. Although many soluble substrates have since been identified, the chief physiological role of GRKs still remains the uncoupling of GPCRs from heterotrimeric G-proteins by promoting β-arrestin binding through the phosphorylation of the receptor. It is expected that GRKs recognize activated GPCRs through a docking site that not only recognizes the active conformation of the transmembrane domain of the receptor but also stabilizes a more catalytically competent state of the kinase domain.
View Article and Find Full Text PDFG protein-coupled receptor (GPCR) kinases (GRKs) were discovered by virtue of their ability to phosphorylate activated GPCRs. They constitute a branch of the AGC kinase superfamily, but their mechanism of activation is largely unknown. To initiate a study of GRK2 activation, we sought to identify sites on GRK2 remote from the active site that are involved in interactions with their substrate receptors.
View Article and Find Full Text PDFMetabotropic glutamate receptors (mGluRs) are members of a unique class of G protein-coupled receptors (class III) that include the calcium-sensing and gamma-aminobutyric acid type B receptors. The activity of mGluRs is regulated by second messenger-dependent protein kinases and G protein-coupled receptor kinases (GRKs). The attenuation of both mGluR1a and mGluR1b signaling by GRK2 is phosphorylation- and beta-arrestin-independent and requires the concomitant association of GRK2 with both the receptor and Galpha(q/11).
View Article and Find Full Text PDFIn response to extracellular signals, G protein-coupled receptors (GPCRs) catalyze guanine nucleotide exchange on Galpha subunits, enabling both activated Galpha and Gbetagamma subunits to target downstream effector enzymes. One target of Gbetagamma is G protein-coupled receptor kinase 2 (GRK2), an enzyme that initiates homologous desensitization by phosphorylating activated GPCRs. GRK2 consists of three distinct domains: an RGS homology (RH) domain, a protein kinase domain, and a pleckstrin homology (PH) domain, through which it binds Gbetagamma.
View Article and Find Full Text PDFHeterotrimeric guanine nucleotide (G)-coupled receptors (GPCRs) form the largest family of integral membrane proteins. GPCR activation by an agonist promotes the exchange of GDP for GTP on the Galpha subunit of the heterotrimeric G protein. The dissociated Galpha and Gbetagamma subunits subsequently modulate the activity of a diverse assortment of effector systems.
View Article and Find Full Text PDFHeterotrimeric guanine nucleotide-binding proteins (G proteins) transmit signals from membrane bound G protein-coupled receptors (GPCRs) to intracellular effector proteins. The G(q) subfamily of Galpha subunits couples GPCR activation to the enzymatic activity of phospholipase C-beta (PLC-beta). Regulators of G protein signaling (RGS) proteins bind to activated Galpha subunits, including Galpha(q), and regulate Galpha signaling by acting as GTPase activating proteins (GAPs), increasing the rate of the intrinsic GTPase activity, or by acting as effector antagonists for Galpha subunits.
View Article and Find Full Text PDFHeterotrimeric guanine nucleotide-binding (G) protein-coupled receptor kinases (GRKs) are cytosolic proteins that contribute to the adaptation of G protein-coupled receptor signaling. The canonical model for GRK-dependent receptor desensitization involves GRK-mediated receptor phosphorylation to promote the binding of arrestin proteins that sterically block receptor coupling to G proteins. However, GRK-mediated desensitization, in the absence of phosphorylation and arrestin binding, has been reported for metabotropic glutamate receptor 1 (mGluR1) and gamma-aminobutyric acid B receptors.
View Article and Find Full Text PDFRegulators of G protein signaling (RGS) proteins bind to active G alpha subunits and accelerate the rate of GTP hydrolysis and/or block interaction with effector molecules, thereby decreasing signal duration and strength. RGS proteins are defined by the presence of a conserved 120-residue region termed the RGS domain. Recently, it was shown that the G protein-coupled receptor kinase 2 (GRK2) contains an RGS domain that binds to the active form of G alpha(q).
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) transduce cellular signals from hormones, neurotransmitters, light, and odorants by activating heterotrimeric guanine nucleotide-binding (G) proteins. For many GPCRs, short term regulation is initiated by agonist-dependent phosphorylation by GPCR kinases (GRKs), such as GRK2, resulting in G protein/receptor uncoupling. GRK2 also regulates signaling by binding G alpha(q/ll) and inhibiting G alpha(q) stimulation of the effector phospholipase C beta.
View Article and Find Full Text PDFThe accepted paradigm for G protein-coupled receptor kinase (GRK)-mediated desensitization of G protein-coupled receptors involves GRK-mediated receptor phosphorylation followed by the binding of arrestin proteins. Although GRKs contribute to metabotropic glutamate receptor 1 (mGluR1) inactivation, beta-arrestins do not appear to be required for mGluR1 G protein uncoupling. Therefore, we investigated whether the phosphorylation of serine and threonine residues localized within the C terminus of mGluR1a is sufficient to allow GRK2-mediated attenuation of mGluR1a signaling.
View Article and Find Full Text PDFArrestins play an important role in quenching signal transduction initiated by G protein-coupled receptors. To explore the specificity of arrestin-receptor interaction, we have characterized the ability of various wild-type arrestins to bind to rhodopsin, the beta 2-adrenergic receptor (beta 2AR), and the m2 muscarinic cholinergic receptor (m2 mAChR). Visual arrestin was found to be the most selective arrestin since it discriminated best between the three different receptors tested (highest binding to rhodopsin) as well as between the phosphorylation and activation state of the receptor (> 10-fold higher binding to the phosphorylated light-activated form of rhodopsin compared to any other form of rhodopsin).
View Article and Find Full Text PDFRetinal arrestin (S-antigen) inactivates the phototransduction cascade by binding to light-activated phosphorylated rhodopsin and thereby "arresting" coupling to the G protein transducin. beta-Arrestin (beta arr), a ubiquitous arrestin homolog, acts analogously to desensitize the beta 2-adrenergic receptor by disrupting Gs receptor interaction. In an attempt to identify additional "arrestins" which might regulate the multitude of G protein-coupled receptors, we have isolated two bovine brain cDNAs which encode polypeptide variants of an arrestin homolog which we have designated arrestin3 (arr3).
View Article and Find Full Text PDFMediated import of proteins into the nucleus requires cytosolic factors and can be blocked by reagents that bind to O-linked glycoproteins of the nuclear pore complex. To investigate whether a cytosolic transport factor directly interacts with these glycoproteins, O-linked glycoproteins from rat liver nuclear envelopes were immobilized on Sepharose beads via wheat germ agglutinin or specific antibodies. When rabbit reticulocyte lysate (which provides cytosolic factors required for in vitro nuclear import) was incubated with the immobilized glycoproteins, the cytosol was found to be inactivated by up to 80% in its ability to support mediated protein import in permeabilized mammalian cells.
View Article and Find Full Text PDF