Zeta inhibitory peptide (ZIP), a PKMζ inhibitor, is widely used to interfere with the maintenance of acquired memories. ZIP is able to erase memory even in the absence of PKMζ, via an unknown mechanism. We found that ZIP induces redistribution of the AMPARGluA1 in HEK293 cells and primary cortical neurons, and decreases AMPAR-mediated currents in the nucleus accumbens (NAc).
View Article and Find Full Text PDFAltering AMPA receptor (AMPAR) content at synapses is a key mechanism underlying the regulation of synaptic strength during learning and memory. Previous work demonstrated that SynDIG1 (synapse differentiation-induced gene 1) encodes a transmembrane AMPAR-associated protein that regulates excitatory synapse strength and number. Here we show that the related protein SynDIG4 (also known as Prrt1) modifies AMPAR gating properties in a subunit-dependent manner.
View Article and Find Full Text PDFAMPA receptors (AMPARs) mediate the majority of fast excitatory transmission in the brain and critically contribute to synaptic plasticity and pathology. AMPAR trafficking and gating are tightly controlled by auxiliary transmembrane AMPAR regulatory proteins (TARPs). Here, using systematic domain swaps with the TARP-insensitive kainate receptor GluK2, we show that AMPAR interaction with the prototypical TARP stargazin/γ2 primarily involves the AMPAR membrane domains M1 and M4 of neighboring subunits, initiated or stabilized by the AMPAR C-tail, and that these interactions are sufficient to enable full receptor modulation.
View Article and Find Full Text PDFAMPA receptor (AMPAR) function is modulated by auxiliary subunits. Here, we report on three AMPAR interacting proteins-namely CKAMP39, CKAMP52 and CKAMP59-that, together with the previously characterized CKAMP44, constitute a novel family of auxiliary subunits distinct from other families of AMPAR interacting proteins. The new members of the CKAMP family display distinct regional and developmental expression profiles in the mouse brain.
View Article and Find Full Text PDFLong-term heat acclimation (34 °C, 30d) alters the physiological responses and the metabolic state of organisms. It also improves ability to cope with hypoxic stress via a cross-tolerance mechanism. Within the brain, the hippocampal and frontal cortex neurons are the most sensitive to hypoxia and cell death is mainly caused by calcium influx via glutamate-gated ion channels, specifically NMDA and AMPA receptors.
View Article and Find Full Text PDFCKAMP44, identified here by a proteomic approach, is a brain-specific type I transmembrane protein that associates with AMPA receptors in synaptic spines. CKAMP44 expressed in Xenopus oocytes reduced GluA1- and A2-mediated steady-state currents, but did not affect kainate- or N-methyl-D-aspartate (NMDA) receptor-mediated currents. Mouse hippocampal CA1 pyramidal neurons expressed CKAMP44 at low abundance, and overexpression of CKAMP44 led to stronger and faster AMPA receptor desensitization, slower recovery from desensitization, and a reduction in the paired-pulse ratio of AMPA currents.
View Article and Find Full Text PDFA prominent feature of ionotropic glutamate receptors from the AMPA and kainate subtypes is their profound desensitization in response to glutamate-a process thought to protect the neuron from overexcitation. In AMPA receptors, it is well established that desensitization results from rearrangements of the interface formed between agonist-binding domains of adjacent subunits; however, it is unclear how this mechanism applies to kainate receptors. Here we show that stabilization of the binding domain dimer by the generation of intermolecular disulfide bonds apparently blocked desensitization of the kainate receptor GluR6.
View Article and Find Full Text PDFThe stargazin gene (also referred to as Cacng2) has been identified by forward genetics in a spontaneous mouse mutant with ataxic gait, upward head-elevating movements (hence the name stargazer for the mouse) and episodes of spike-wave discharges. Stargazin is related to the gamma-1 subunit of skeletal muscle voltage-dependent calcium channel (VDCC), and a deficit in its role as auxiliary VDCC subunit was proposed to underlie the epileptic phenotype of the mouse; yet, a conclusive demonstration of stargazin function in VDCC regulation is still lacking. In contrast, stargazin and its three closely related isoforms gamma-3, gamma-4 and gamma-8 were shown to function as auxiliary subunits for a very different ion channel - the AMPA-type glutamate receptor - prominently regulating early intracellular transport, synaptic targeting and anchoring, and ion channel functions of this major excitatory receptor in the brain.
View Article and Find Full Text PDFAMPA-type glutamate receptors are specifically inhibited by the noncompetitive antagonists GYKI-53655 and CP-465,022, which act through sites and mechanisms that are not understood. Using receptor mutagenesis, we found that these antagonists bind at the interface between the S1 and S2 glutamate binding core and channel transmembrane domains, specifically interacting with S1-M1 and S2-M4 linkers, thereby disrupting the transduction of agonist binding into channel opening. We also found that the antagonists' affinity is higher for agonist-unbound receptors than for activated nondesensitized receptors, further depending on the level of S1 and S2 domain closure.
View Article and Find Full Text PDFThe AMPA-type glutamate receptors mediate the majority of the fast excitatory synaptic transmission and critically contribute to synaptic plasticity in the brain, hence the existence of numerous trafficking proteins dedicated to regulation of their synaptic delivery and turnover. Stargazin (also termed gamma2) is a member of a recently identified protein family termed transmembrane AMPA receptor regulatory proteins (TARPs). TARPs physically associate with AMPA receptors and participate in their surface delivery and anchoring at the postsynaptic membrane.
View Article and Find Full Text PDFThe N-terminal domain (NTD) of alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) and kainate glutamate receptors plays an important role in controlling subtype specific receptor assembly. To identify NTD subdomains involved in this process we generated AMPA glutamate receptor 3 (GluR3) mutants having intra-NTD substitutions with the corresponding regions of the kainate receptor GluR6 and tested their ability to form functional heteromers with wild-type subunits. The chimeric design was based on the homology of the NTD to the NTD of the metabotropic GluR1, shown to form two globular lobes and to assemble in dimers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2005
We report the crystal structure of the glycosylated ligand-binding (S1S2) domain of the kainate receptor subunit GluR6, in complex with the agonist domoate. The structure shows the expected overall homology with AMPA and NMDA receptor subunit structures but reveals an unexpected binding mode for the side chain of domoate, in which contact is made to the larger lobe only (lobe I). In common with the AMPA receptor subunit GluR2, the GluR6 S1S2 domain associates as a dimer, with many of the interdimer contacts being conserved.
View Article and Find Full Text PDFAMPA receptors are tetramers assembled as a dimer-of-dimers with a 2-fold rotational symmetry in their extracellular domains. Two papers in this issue of Neuron, by Horning and Mayer and Sobolevsky et al., provide complementary data that extend this view and highlight the role of dimers in channel gating.
View Article and Find Full Text PDFIonotropic glutamate receptors of the kainate and AMPA subtypes share a number of structural features, both topographical and in terms of stoichiometry. In addition, AMPA and kainate receptors share similar pharmacological and biophysical properties in that they are activated by common agonists and display rapid activation and desensitization characteristics. However, we show here that in contrast to AMPA receptor-mediated responses (native or recombinant GluR3 receptor), the response of native and recombinant (GluR6) kainate receptors to glutamate was drastically reduced in the absence of extracellular Na+ (i.
View Article and Find Full Text PDFFunctional heterogeneity of ionotropic glutamate receptors arises not only from the existence of many subunits and isoforms, but also from combinatorial assembly creating channels with distinct properties. This heteromerization is subtype restricted and thought to be determined exclusively by the proximal extracellular N-terminal domain of the subunits. However, using functional assays for heteromer formation, we show that, besides the N-terminal domain, the membrane sector and the C-terminal part of S2 are critical determinants for the formation of functional channels.
View Article and Find Full Text PDFDesensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors is thought to shape the synaptic response and act as a neuroprotective mechanism at central synapses, but the molecular mechanism underlying desensitization is poorly understood. We found that replacing the glutamate binding domain S1 of GluR3 (an AMPA receptor) with S1 of GluR6 (a kainate receptor) resulted in a fully active but completely nondesensitizing receptor. Smaller substitutions within S1 identified, besides two additional modulatory regions, a single exchange, L507Y, as is required and sufficient for the block of desensitization.
View Article and Find Full Text PDFThe subunit stoichiometry of several ligand-gated ion channel receptors is still unknown. A counting method was developed to determine the number of subunits in one family of brain glutamate receptors. Successful application of this method in an HEK cell line provides evidence that ionotropic glutamate receptors share a tetrameric structure with the voltage-gated potassium channels.
View Article and Find Full Text PDFMolecular mechanisms of anesthetic action on neurotransmitter receptors are poorly understood. The major excitatory neurotransmitter in the central nervous system is glutamate, and recent studies found that volatile anesthetics inhibit the function of the alpha-amino-3-hydroxyisoxazolepropionic acid subtype of glutamate receptors (e.g.
View Article and Find Full Text PDFBy exchanging portions of the AMPA receptor subunit GluR3 and the kainate receptor subunit GluR6, we have identified two discontinuous segments of approximately 150 amino acid residues each that control the agonist pharmacology of these glutamate receptors. The first segment (S1) is adjacent and N-terminal to the putative transmembrane domain 1 (TM1), whereas the second segment (S2) is located between the putative TM3 and TM4. Only the simultaneous exchange of S1 and S2 converts the pharmacological profile of the recipient to that of the donor subunit.
View Article and Find Full Text PDFIn the rat, subunits of the glutamate receptor family fall into three pharmacologically distinct groups: alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid preferring receptors (Glu R1-4), kainate preferring receptors (Glu R5-7, KA 1, KA 2), and N-methyl-D-aspartate preferring receptors (NMDA R1, NMDA R2A-2D). In the present study, we demonstrate immunocytochemically that the majority of neurons in rat cerebral cortex coexpress members of all three groups of glutamate receptor subunits, Glu R2/3, Glu R5/6/7, and NMDA R1. Using immunoaffinity purified or immunoprecipitated alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, kainate and N-methyl-D-aspartate receptors, we show that alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors containing Glu R1-4, kainate receptors containing Glu R6, Glu R7, and KA 2 and N-methyl-D-aspartate receptors containing NMDA R1 each form distinct protein complexes that do not share subunits.
View Article and Find Full Text PDFUsing oligonucleotide primers derived from the vesicular monoamine transporters sequences, a cDNA predicted to encode the bovine chromaffin granule amine transporter has been cloned (b-VMAT2). Surprisingly, its structure is more similar to the rat brain transporter (VMAT2), than to the rat adrenal counterpart (VMAT1). Unlike rat VMAT1, bovine VMAT2 appears to be expressed both in the adrenal medulla and the brain, as judged by Northern analysis.
View Article and Find Full Text PDFWe have characterized the effects of phenylglyoxal and diethyl pyrocarbonate (DEPC) on the catalytic cycle of the amine transporter in chromaffin granule membrane vesicles. Both reagents inhibited transport in a dose-dependent reaction (with IC50 values of 8 and 1 mM, respectively). The inhibition by DEPC was specific for histidyl groups since transport could be restored by treatment with hydroxylamine.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 1992
The vesicular amine transporter (VAT) catalyzes transport and storage of catechol and indolamines into subcellular organelles in a wide variety of cells. It plays a central role in neurotransmission and is the primary target for several pharmacological agents. One of the drugs, reserpine, binds very tightly to the transporter and remains bound even after solubilization, a finding that has proven useful for purification of the transporter from bovine adrenal medulla in a fully functional state.
View Article and Find Full Text PDF