Understanding the controls behind the calcification and distribution of planktonic foraminifera in the modern ocean is important when these organisms are used for palaeoceanographic reconstructions. This study combines previously reported shell mass data with new shell geochemistry, light microscopy and X-ray micro-computed tomography analyses to dissect various parameters of shells from surface sediments, investigating the factors influencing their biometry. The goal is to understand which aspects of the marine environment are critical for the calcification and vertical distribution of this species.
View Article and Find Full Text PDFUnderstanding deep-time marine biodiversity change under the combined effects of climate and connectivity changes is fundamental for predicting the impacts of modern climate change in semi-enclosed seas. We quantify the Late Miocene-Early Pliocene [11.63 to 3.
View Article and Find Full Text PDFMassive salt accumulations, or salt giants, have formed in highly restricted marine basins throughout geological history, but their impact on biodiversity has been only patchily studied. The salt giant in the Mediterranean Sea formed as a result of the restriction of its gateway to the Atlantic during the Messinian Salinity Crisis (MSC) 5.97 to 5.
View Article and Find Full Text PDFIncreased planktonic foraminifera shell weights were recorded during the course of Termination II at a tropical site off the shore of the Mauritanian coast. In order to investigate these increased shell mass values, a series of physicochemical analyses were performed, including X-ray computed tomography (CT). The data are given here.
View Article and Find Full Text PDFThis study provides evidence that ambient seawater density influences calcification and may account for the observed planktonic foraminifera shell mass increase during glacial times. Volumes of weighed fossil Globigerina bulloides shells were accurately determined using X-ray Computer Tomography and were combined with water density reconstructions from Mg/Ca and δO measurements to estimate the buoyancy force exerted on each shell. After assessment of dissolution effects, the resulting relationship between shell mass and buoyancy suggests that heavier shells would need to be precipitated in glacial climates in order for these organisms to remain at their optimum living depth, and counterbalance the increased buoyant force of a denser, glacial ocean.
View Article and Find Full Text PDF