Publications by authors named "Sterbova K"

In all organisms, the biotransformation of xenobiotics to less toxic and more hydrophilic compounds represents an effective defense strategy. In pathogens, the biotransformation of drugs (used for their elimination from the host) may provide undesirable protective effects that could potentially compromise the drug's efficacy. Accordingly, increased drug deactivation via accelerated biotransformation is now considered as one of the mechanisms of drug resistance.

View Article and Find Full Text PDF

The microalga sp. (Chlorophyceae) was cultured in a raceway pond (RWP) placed in a greenhouse. The objective of this case study was to monitor the photosynthesis performance and selected physicochemical variables (irradiance, temperature, dissolved oxygen concentration) of microalgae cultures in situ at various depths of RWP.

View Article and Find Full Text PDF
Article Synopsis
  • This study evaluated the use of brivaracetam (BRV) in treating pediatric epilepsy, involving 93 children with various types of epilepsy and a history of multiple antiseizure medications.
  • The findings showed high retention rates of BRV treatment, with 30.1% of patients experiencing a positive response, particularly among those with focal seizures, while impacts on epileptic encephalopathy patients were minimal.
  • Overall, most patients tolerated BRV well, but some experienced adverse effects that required medication adjustments or discontinuation.
View Article and Find Full Text PDF

Aldo-keto reductases (AKRs), a superfamily of NADP(H)-dependent oxidoreductases, catalyze the oxidoreduction of a wide variety of eobiotic and xenobiotic aldehydes and ketones. In mammals, AKRs play essential roles in hormone and xenobiotic metabolism, oxidative stress, and drug resistance, but little is known about these enzymes in the parasitic nematode Haemonchus contortus. In the present study, 22 AKR genes existing in the H.

View Article and Find Full Text PDF

Voltage-gated sodium channel β1 subunits are essential proteins that regulate excitability. They modulate sodium and potassium currents, function as cell adhesion molecules and regulate gene transcription following regulated intramembrane proteolysis. Biallelic pathogenic variants in , encoding β1, are linked to developmental and epileptic encephalopathy 52, with clinical features overlapping Dravet syndrome.

View Article and Find Full Text PDF

Carbonyl-reducing enzymes (CREs) catalyse the reduction of carbonyl groups in many eobiotic and xenobiotic compounds in all organisms, including helminths. Previous studies have shown the important roles of CREs in the deactivation of several anthelmintic drugs (e.g.

View Article and Find Full Text PDF

Poly-β-hydroxybutyrate (PHB) is a potential source of biodegradable plastics that are environmentally friendly due to their complete degradation to water and carbon dioxide. This study aimed to investigate PHB production in the cyanobacterium Synechocystis sp. PCC6714 MT_a24 in an outdoor bioreactor using urban wastewater as a sole nutrient source.

View Article and Find Full Text PDF

Objective: Developmental and epileptic encephalopathies (DEEs) are a group of severe, early-onset epilepsies characterised by refractory seizures, developmental delay, or regression and generally poor prognosis. DEE are now known to have an identifiable molecular genetic basis and are usually examined using a gene panel. However, for many patients, the genetic cause has still not been identified.

View Article and Find Full Text PDF

Pathogenic variants in ATP-dependent chromatin remodeling proteins are a recurrent cause of neurodevelopmental disorders (NDDs). The NURF complex consists of BPTF and either the SNF2H () or SNF2L () ISWI-chromatin remodeling enzyme. Pathogenic variants in and were previously implicated in NDDs.

View Article and Find Full Text PDF

Microalgae are excellent sources of biomass containing several important compounds for human and animal nutrition-proteins, lipids, polysaccharides, pigments and antioxidants as well as bioactive secondary metabolites. In addition, they have a great biotechnological potential for nutraceuticals, and pharmaceuticals as well as for CO sequestration, wastewater treatment, and potentially also biofuel and biopolymer production. In this review, the industrial production of the most frequently used microalgae genera-Arthrospira, Chlorella, Dunaliella, Haematococcus, Nannochloropsis, Phaeodactylum, Porphyridium and several other species is discussed as concerns the applicability of the most widely used large-scale systems, solar bioreactors (SBRs)-open ponds, raceways, cascades, sleeves, columns, flat panels, tubular systems and others.

View Article and Find Full Text PDF

Photosynthesis, growth and biochemical composition of the biomass of the freshwater microalga Chlamydopodium fusiforme cultures outdoors in a thin-layer cascade were investigated. Gross oxygen production measured off-line in samples taken from the outdoor cultures was correlated with the electron transport rate estimated from chlorophyll a fluorescence measurements. According to photosynthesis measurements, a mean of 38.

View Article and Find Full Text PDF

The microalga Chlamydopodium fusiforme MACC-430 was cultured in two types of outdoor pilot cultivation units-a thin-layer cascade (TLC) and a raceway pond (RWP) placed in a greenhouse. This case study aimed to test their potential suitability for cultivation scale-up to produce biomass for agriculture purposes (e.g.

View Article and Find Full Text PDF

Short-chain dehydrogenases/reductases (SDRs) regulate the activities of many hormones and other signaling molecules and participate in the deactivation of various carbonyl-bearing xenobiotics. Nevertheless, knowledge about these important enzymes in helminths remains limited. The aim of our study was to characterize the SDR superfamily in the parasitic nematode Haemonchus contortus.

View Article and Find Full Text PDF

Identifying genetic risk factors for highly heterogeneous disorders like epilepsy remains challenging. Here, we present the largest whole-exome sequencing study of epilepsy to date, with >54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets, and four copy number variants at exome-wide significance.

View Article and Find Full Text PDF

Thin-layer (TL) photobioreactors (PBRs) are characterised by high productivity. However, their use is limited to lab/pilot-scale, and a deeper level of characterisation is needed to reach industrial scale and test the resistance of multiple microalgae. Here, the performance and composition of eight microalgal communities cultivated in the two main TLs design (thin-layer cascade (TLC) and thin-layer raceway pond (RW)) were investigated through Illumina sequencing.

View Article and Find Full Text PDF

Background: Schimke immunoosseous dysplasia (SIOD) is an ultra-rare inherited disease affecting many organ systems. Spondyloepiphyseal dysplasia, T-cell immunodeficiency and steroid resistant nephrotic syndrome are the main symptoms of this disease.

Case Presentation: We aimed to characterize the clinical, pathological and genetic features of SIOD patients received at tertiary Pediatric Nephrology Center, University Hospital Motol, Prague, Czech Republic during the period 2001-2021.

View Article and Find Full Text PDF

Chromosomal band 17q12 is a gene-rich region flanked by segmental duplications, making the region prone to deletions and duplications via the non-allelic homologous recombination mechanism. While deletions cause a well-described disorder with a specific phenotype called renal cysts and diabetes mellitus, the phenotype caused by reciprocal duplications is less specific, primarily because of variable expressivity, and incomplete penetrance. We present an unusual family with four children carrying the 17q12 microduplication inherited from their clinically healthy mother, who was a carrier of both the duplication and, interestingly, also of an atypical deletion of the 17q12 region.

View Article and Find Full Text PDF

Background And Objectives: encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo variants.

View Article and Find Full Text PDF

We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability).

View Article and Find Full Text PDF

Biallelic variants in the NARS2 gene are the cause of a continuous spectrum of neurodegenerative disorders presenting with various severity-from spastic paraplegia, progressive neurodegeneration to Leigh and Alpers syndrome. Common clinical signs result from a mitochondrial dysfunction based on OXPHOS deficiency. Here, we present a patient with infantile-onset severe epilepsy leading to fatal refractory status epilepticus.

View Article and Find Full Text PDF

Introduction: Biallelic variants in the SLC1A4 gene have been so far identified as a very rare cause of neurodevelopmental disorders with or without epilepsy and almost exclusively described in the Ashkenazi-Jewish population.

Patients And Methods: Here we present Czech patient with microcephaly, severe global developmental delay and intractable seizures whose condition remained undiagnosed despite access to clinical experience and standard diagnostic methods including examination with an epilepsy targeted NGS gene panel.

Results: Whole exome sequencing revealed a novel variant NM_003038.

View Article and Find Full Text PDF

The nematode , a gastrointestinal parasite of ruminants, can severely burden livestock production. Although anthelmintics are the mainstay in the treatment of haemonchosis, their efficacy diminishes due to drug-resistance development in An increased anthelmintics inactivation via biotransformation belongs to a significant drug-resistance mechanism in . UDP-glycosyltransferases (UGTs) participate in the metabolic inactivation of anthelmintics and other xenobiotic substrates through their conjugation with activated sugar, which drives the elimination of the xenobiotics due to enhanced solubility.

View Article and Find Full Text PDF

Background: Neurodegeneration with brain iron accumulation constitutes a group of rare progressive movement disorders sharing intellectual disability and neuroimaging findings as common denominators. Beta-propeller protein-associated neurodegeneration (BPAN) represents approximately 7% of the cases, and its first signs are typically epilepsy and developmental delay. We aimed to describe in detail the phenotype of BPAN with a special focus on iron metabolism.

View Article and Find Full Text PDF