Living in a farm environment in proximity to animals is associated with reduced risk of developing allergies and asthma, and has been suggested to protect against other diseases, such as inflammatory bowel disease and cancer. Despite epidemiological evidence, experimental disease models that recapitulate such environments are needed to understand the underlying mechanisms. In this study, we show that feralizing conventional inbred mice by continuous exposure to a livestock farmyard-type environment conferred protection toward colorectal carcinogenesis.
View Article and Find Full Text PDFCarotenoids are lipophilic compounds that are digested and absorbed along with lipids. Emulsions based on a mixture of plum tomato and red sweet pepper, with 5% or 10% rapeseed oil, were obtained by high pressure homogenization, and the concentration of carotenoids in the emulsion oil droplets was quantified. The fraction of lycopene and beta-carotene released from the plant matrix into the oil droplets was highest in the 10% emulsion, which had larger oil droplets than the 5% emulsion.
View Article and Find Full Text PDFA multitude of cancer types, including breast, testicular, liver and colorectal cancer, have associations with exposure to Persistent Organic Pollutants (POPs). The present study aimed to investigate whether a mixture of POPs could affect intestinal tumorigenesis in the A/J Min/+ mouse, a model for human colorectal cancer (CRC). Pollutants were selected for their presence in Scandinavian food products and the mixture was designed based on defined human estimated daily intake levels.
View Article and Find Full Text PDFThe International Agency for Research on Cancer has classified red meat as "probably carcinogenic to humans" (Group 2A). In mechanistic studies exploring the link between intake of red meat and CRC, heme iron, the pigment of red meat, is proposed to play a central role as a catalyzer of luminal lipid peroxidation and cytotoxicity. In the present work, the novel A/J Min/+ mouse was used to investigate the effects of dietary beef, pork, chicken, or salmon (40% muscle food (dry weight) and 60% powder diet) on Apc-driven intestinal carcinogenesis, from week 3-13 of age.
View Article and Find Full Text PDFBackground: Intake of red meat is considered a risk factor for colorectal cancer (CRC) development, and heme, the prosthetic group of myoglobin, has been suggested as a potential cause. One of the proposed molecular mechanisms of heme-induced CRC is based on an increase in the rate of lipid peroxidation catalysed by heme.
Methods: In the present work, the novel A/J Min/+ mouse model for Apc-driven colorectal cancer was used to investigate the effect of dietary heme (0.
Red meat high in heme iron may promote the formation of potentially genotoxic aldehydes during lipid peroxidation in the gastrointestinal tract. In this study, the formation of malondialdehyde (MDA) equivalents measured by the thiobarbituric acid reactive substances (TBARS) method was determined during in vitro digestion of cooked red meat (beef and pork), as well as white meat (chicken) and fish (salmon), whereas analysis of 4-hydroxyhexenal (HHE) and 4-hydroxynonenal (HNE) was performed during in vitro digestion of cooked beef and salmon. Comparing products with similar fat contents indicated that the amount of unsaturated fat and not total iron content was the dominating factor influencing the formation of aldehydes.
View Article and Find Full Text PDF