There is broad agreement that current food systems are not on a sustainable trajectory that will enable us to reach the Sustainable Development Goals by 2030, particularly in the face of anthropogenic climate change. Guided by a consideration of some food system reconfigurations in the past, we outline an agenda of work around four action areas: rerouting old systems into new trajectories; reducing risks; minimising the environmental footprint of food systems; and realigning the enablers of change needed to make new food systems function. Here we highlight food systems levers that, along with activities within these four action areas, may shift food systems towards more sustainable, inclusive, healthy and climate-resilient futures.
View Article and Find Full Text PDFThe El Niño-Southern Oscillation (ENSO) cycle of alternating warm El Niño and cold La Niña events is the dominant year-to-year climate signal on Earth. ENSO originates in the tropical Pacific through interactions between the ocean and the atmosphere, but its environmental and socioeconomic impacts are felt worldwide. Spurred on by the powerful 1997-1998 El Niño, efforts to understand the causes and consequences of ENSO have greatly expanded in the past few years.
View Article and Find Full Text PDFDisease transmission forecasts can help minimize human and domestic animal health risks by indicating where disease control and prevention efforts should be focused. For disease systems in which weather-related variables affect pathogen proliferation, dispersal, or transmission, the potential for disease forecasting exists. We present a seasonal forecast of St.
View Article and Find Full Text PDFForecasts of El Niño climate events are routinely provided and distributed, but the limits of El Niño predictability are still the subject of debate. Some recent studies suggest that the predictability is largely limited by the effects of high-frequency atmospheric 'noise', whereas others emphasize limitations arising from the growth of initial errors in model simulations. Here we present retrospective forecasts of the interannual climate fluctuations in the tropical Pacific Ocean for the period 1857 to 2003, using a coupled ocean-atmosphere model.
View Article and Find Full Text PDF