Some bacteria survive in nutrient-poor environments and resist killing by antimicrobials by forming spores. The cortex layer of the peptidoglycan cell wall that surrounds mature spores contains a unique modification, muramic-δ-lactam, that is essential for spore germination and outgrowth. Two proteins, the amidase CwlD and the deacetylase PdaA, are required for muramic-δ-lactam synthesis in cells, but their combined ability to generate muramic-δ-lactam has not been directly demonstrated.
View Article and Find Full Text PDFThe poor retention and survival of cells after transplantation to solid tissue represent a major obstacle for the effectiveness of stem cell-based therapies. The ability to track stem cells can lead to a better understanding of the biodistribution of transplanted cells, in addition to improving the analysis of stem cell therapies' outcomes. Here, we described the use of a carbon nanotube-based contrast agent (CA) for X-ray computed tomography (CT) imaging as an intracellular CA to label bone marrow-derived mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2017
Carbon nanotubes (CNTs) have been used for a plethora of biomedical applications, including their use as delivery vehicles for drugs, imaging agents, proteins, DNA, and other materials. Here, we describe the synthesis and characterization of a new CNT-based contrast agent (CA) for X-ray computed tomography (CT) imaging. The CA is a hybrid material derived from ultrashort single-walled carbon nanotubes (20-80 nm long, US-tubes) and Bi(III) oxo-salicylate clusters with four Bi(III) ions per cluster (BiC).
View Article and Find Full Text PDF