Publications by authors named "Stephen Wahlig"

Background And Purpose: Deep learning algorithms for segmentation of multiple sclerosis (MS) plaques generally require training on large datasets. This manuscript evaluates the effect of transfer learning from segmentation of another pathology to facilitate use of smaller MS-specific training datasets. That is, a model trained for detection of one type of pathology was re-trained to identify MS lesions and active demyelination.

View Article and Find Full Text PDF

As the cornea is one of the most transplanted tissues in the body it has placed a burden on the provision of corneas from cadaveric donors. Corneal endothelial dysfunction is the leading indication for cornea transplant. Therefore, tissue engineering is emerging as an alternative approach to overcome the global shortage of transplant-grade corneas.

View Article and Find Full Text PDF

The corneal endothelium regulates corneal hydration to maintain the transparency of cornea. Lacking regenerative capacity, corneal endothelial cell loss due to aging and diseases can lead to corneal edema and vision loss. There is limited information on the existence of corneal endothelial progenitors.

View Article and Find Full Text PDF

Purpose: We define optical coherence tomography (OCT) measurement parameters of the corneal endothelium/Descemet's membrane (DM) complex and peripheral transition zone (TZ) and describe these measurements in an ethnically Chinese population.

Methods: OCT images of the anterior segment and iridocorneal angle were obtained from 129 healthy Chinese subjects (129 eyes), aged 40 to 81 years. The scleral spur (SS) and Schwalbe's line (SL) were identified in each image.

View Article and Find Full Text PDF

Peroxiredoxin 6 (Prdx6) is the only mammalian 1-Cys member of the Prdx family, a group of enzymes which share the ability to reduce peroxides. In addition to its peroxidase function, Prdx6 also demonstrates phospholipase A and lysophosphatidylcholine acyl transferase (LPCAT) activities. These enzymatic activities play an important role in regenerating oxidized membrane phospholipids and maintaining an appropriate balance of intracellular reactive oxygen species.

View Article and Find Full Text PDF

Reactive stromal cells are an integral part of tumor microenvironment (TME) and interact with cancer cells to regulate their growth. Although targeting stromal cells could be a viable therapy to regulate the communication between TME and cancer cells, identification of stromal targets that make cancer cells vulnerable has remained challenging and elusive. Here, we identify a previously unrecognized mechanism whereby metabolism of reactive stromal cells is reprogrammed through an upregulated glutamine anabolic pathway.

View Article and Find Full Text PDF

Glutamine can play a critical role in cellular growth in multiple cancers. Glutamine-addicted cancer cells are dependent on glutamine for viability, and their metabolism is reprogrammed for glutamine utilization through the tricarboxylic acid (TCA) cycle. Here, we have uncovered a missing link between cancer invasiveness and glutamine dependence.

View Article and Find Full Text PDF