Ther Adv Cardiovasc Dis
August 2015
Objective: Heart chymase rather than angiotensin converting enzyme has higher specificity for angiotensin (Ang) I conversion into Ang II in humans. A new pathway for direct cardiac Ang II generation has been revealed through the demonstration that Ang-(1-12) is cleaved by chymase to generate Ang II directly. We address here whether Ang-(1-12) and chymase gene expression and activity are detected in the atrial appendages of 44 patients (10 females) undergoing heart surgery for the correction of valvular heart disease, resistant atrial fibrillation or ischemic heart disease.
View Article and Find Full Text PDFLessons learned from the characterization of the biological roles of Ang-(1-7) [angiotensin-(1-7)] in opposing the vasoconstrictor, proliferative and prothrombotic actions of AngII (angiotensin II) created an underpinning for a more comprehensive exploration of the multiple pathways by which the RAS (renin-angiotensin system) of blood and tissues regulates homoeostasis and its altered state in disease processes. The present review summarizes the progress that has been made in the novel exploration of intermediate shorter forms of angiotensinogen through the characterization of the expression and functions of the dodecapeptide Ang-(1-12) [angiotensin-(1-12)] in the cardiac production of AngII. The studies reveal significant differences in humans compared with rodents regarding the enzymatic pathway by which Ang-(1-12) undergoes metabolism.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2013
Angiotensin-(1-12) [ANG-(1-12)], a new member of the renin-angiotensin system, is recognized as a renin independent precursor for ANG II. However, the processing of ANG-(1-12) in the circulation in vivo is not fully established. We examined the effect of angiotensin converting enzyme (ACE) and chymase inhibition on angiotensin peptides formation during an intravenous infusion of ANG-(1-12) in normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR).
View Article and Find Full Text PDFWe examined the antihypertensive effects of valsartan, aliskiren, or both drugs combined on circulating, cardiac, and renal components of the renin-angiotensin system in congenic mRen2.Lewis hypertensive rats assigned to: vehicle (n=9), valsartan (via drinking water, 30 mg/kg per day; n=10), aliskiren (SC by osmotic mini-pumps, 50 mg/kg per day; n=10), or valsartan (30 mg/kg per day) combined with aliskiren (50 mg/kg per day; n=10). Arterial pressure and heart rate were measured by telemetry before and during 2 weeks of treatment; trunk blood, heart, urine, and kidneys were collected for measures of renin-angiotensin system components.
View Article and Find Full Text PDFObjectives: Increased sympathetic outflow, renin-angiotensin system (RAS) activity, and oxidative stress are critical mechanisms underlying the adverse cardiovascular effects of dietary salt excess. Nebivolol is a third-generation, highly selective β1-receptor blocker with RAS-reducing effects and additional antioxidant properties. This study evaluated the hypothesis that nebivolol reduces salt-induced cardiac remodeling and dysfunction in spontaneous hypertensive rats (SHRs) by suppressing cardiac RAS and oxidative stress.
View Article and Find Full Text PDF