Radiolabeling of substrates with 2-[F]fluoroethylazide exploits the rapid kinetics, chemical selectivity, and mild conditions of the copper-catalyzed azide-alkyne cycloaddition reaction. While this methodology has proven to result in near-quantitative labeling of alkyne-tagged precursors, the relatively small size of the fluoroethylazide group makes separation of the F-labeled radiotracer and the unreacted precursor challenging, particularly with precursors >500 Da (e.g.
View Article and Find Full Text PDFPeptides typically have poor biostabilities, and natural sequences cannot easily be converted into drug-like molecules without extensive medicinal chemistry. We have adapted mRNA display to drive the evolution of highly stable cyclic peptides while preserving target affinity. To do this, we incorporated an unnatural amino acid in an mRNA display library that was subjected to proteolysis prior to selection for function.
View Article and Find Full Text PDFPeptides constructed with the 20 natural amino acids are generally considered to have little therapeutic potential because they are unstable in the presence of proteases and peptidases. However, proteolysis cleavage can be idiosyncratic, and it is possible that natural analogues of functional sequences exist that are highly resistant to cleavage. Here, we explored this idea in the context of peptides that bind to the signaling protein Gαi1.
View Article and Find Full Text PDF