Cytometry B Clin Cytom
September 2016
Objectives: Flow cytometry is an important tool for identification of neoplastic T-cells, but immunophenotypic abnormalities are often subtle and must be distinguished from nonneoplastic subsets. Use of internal control (IC) T-cells in the evaluation for T-cell neoplasms was explored, both as a quality measure and as a reference for evaluating abnormal antigen expression.
Methods: All peripheral blood specimens (3-month period), or those containing abnormal T-cells (29-month period), stained with CD45 V500, CD2 V450, CD3 PE-Cy7, CD7 PE, CD4 Per-CP-Cy5.
Cytometry B Clin Cytom
January 2014
Background: Although many clinical laboratories are adopting higher color flow cytometric assays, the approach to optimizing panel design and data analysis is often traditional and subjective. In order to address the question "What is the best flow cytometric strategy to reliably distinguish germinal center B-cell lymphoma (GC-L) from germinal center hyperplasia (GC-H)?" we applied a computational tool that identifies target populations correlated with a desired outcome, in this case diagnosis.
Design: Cases of GC-H and GC-L evaluated by flow cytometric immunophenotyping using CD45, CD20, kappa, lambda, CD19, CD5, CD10, CD38, were analyzed with flowType and RchyOptimyx to construct cellular hierarchies that best distinguished the two diagnostic groups.
Cytometry B Clin Cytom
July 2013
Background: Although many clinical laboratories are adopting higher color flow cytometric assays, the approach to optimizing panel design and data analysis is often traditional and subjective. In order to address the question "What is the best flow cytometric strategy to reliably distinguish germinal center B-cell lymphoma (GC-L) from lymphoid hyperplasia (GC-H)?" we applied a computational tool that identifies target populations correlated with a desired outcome, in this case diagnosis. Design: Cases of GC-H and GC-L with a germinal center phenotype, evaluated by flow cytometric immunophenotyping using CD45, CD20, kappa, lambda, CD19, CD5, CD10, CD38, were analyzed with flowType and RchyOptimyx to construct cellular hierarchies that best distinguished the two diagnostic groups.
View Article and Find Full Text PDFBackground: T-cell immunoglobulin mucin-3 (TIM3) has recently been described as an acute myeloid leukemia (AML) stem cell antigen expressed on leukemic myeloblasts, but not on normal hematopoietic stem cells. TIM3 is also expressed by monocytes, natural killer cells, and several T cell subsets; however, normal myeloblasts have not been well-characterized or compared to AML. A specific flow cytometric marker capable of separating leukemic myeloblasts from non-neoplastic myeloblasts would be diagnostically useful, especially in the post-chemotherapy setting.
View Article and Find Full Text PDF