In this work, we demonstrate an experimental realization of a granular multiferroic composite, where the magnetic state of a nanocrystal array is modified by tuning the interparticle exchange coupling using an applied electric field. Previous theoretical models of a granular multiferroic composite predicted a unique magnetoelectric coupling mechanism, in which the magnetic spins of the ensemble are governed by interparticle exchange. The extent of these exchange interactions can be controlled by varying the local dielectric environment between grains.
View Article and Find Full Text PDFThe antiferromagnet- (AFM-)ferromagnet (FM) interfaces are of central importance in recently developed pure electric or ultrafast control of FM spins, where the underlying mechanisms remain unresolved. Here we report the direct observation of an Dzyaloshinskii-Moriya interaction (DMI) across the AFM-FM interface of IrMn/CoFeB thin films. The interfacial DMI is quantitatively measured from the asymmetric spin-wave dispersion in the FM layer using Brillouin light scattering.
View Article and Find Full Text PDFFabrication of sharp and smooth Ag tips is crucial in optical scanning probe microscope experiments. To ensure reproducible tip profiles, the polishing process is fully automated using a closed-loop laminar flow system to deliver the electrolytic solution to moving electrodes mounted on a motorized translational stage. The repetitive translational motion is controlled precisely on the μm scale with a stepper motor and screw-thread mechanism.
View Article and Find Full Text PDF